These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks. Ovsiannikov VD; Derevianko A; Gibble K Phys Rev Lett; 2011 Aug; 107(9):093003. PubMed ID: 21929236 [TBL] [Abstract][Full Text] [Related]
5. Quadruply Ionized Barium as a Candidate for a High-Accuracy Optical Clock. Beloy K; Dzuba VA; Brewer SM Phys Rev Lett; 2020 Oct; 125(17):173002. PubMed ID: 33156679 [TBL] [Abstract][Full Text] [Related]
6. High accuracy correction of blackbody radiation shift in an optical lattice clock. Middelmann T; Falke S; Lisdat C; Sterr U Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558 [TBL] [Abstract][Full Text] [Related]
7. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect. Dubé P; Madej AA; Tibbo M; Bernard JE Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242 [TBL] [Abstract][Full Text] [Related]
8. Stark shift of the Cs clock transition frequency: a new experimental approach. Robyr JL; Knowles P; Weis A IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778 [TBL] [Abstract][Full Text] [Related]
9. Blackbody radiation shifts in optical atomic clocks. Safronova M; Kozlov M; Clark C IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):439-47. PubMed ID: 22481777 [TBL] [Abstract][Full Text] [Related]
10. An optical lattice clock with accuracy and stability at the 10(-18) level. Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513 [TBL] [Abstract][Full Text] [Related]
11. High-accuracy measurement of atomic polarizability in an optical lattice clock. Sherman JA; Lemke ND; Hinkley N; Pizzocaro M; Fox RW; Ludlow AD; Oates CW Phys Rev Lett; 2012 Apr; 108(15):153002. PubMed ID: 22587248 [TBL] [Abstract][Full Text] [Related]
12. An optical atomic clock based on a highly charged ion. King SA; Spieß LJ; Micke P; Wilzewski A; Leopold T; Benkler E; Lange R; Huntemann N; Surzhykov A; Yerokhin VA; Crespo López-Urrutia JR; Schmidt PO Nature; 2022 Nov; 611(7934):43-47. PubMed ID: 36323811 [TBL] [Abstract][Full Text] [Related]
13. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks. Yudin VI; Taichenachev AV; Derevianko A Phys Rev Lett; 2014 Dec; 113(23):233003. PubMed ID: 25526127 [TBL] [Abstract][Full Text] [Related]
14. Accurate Determination of Blackbody Radiation Shifts in a Strontium Molecular Lattice Clock. Iritani B; Tiberi E; Skomorowski W; Moszynski R; Borkowski M; Zelevinsky T Phys Rev Lett; 2023 Dec; 131(26):263201. PubMed ID: 38215384 [TBL] [Abstract][Full Text] [Related]
15. Scheme for Quantum-Logic Based Transfer of Accuracy in Polarizability Measurement for Trapped Ions Using a Moving Optical Lattice. Wolf F Phys Rev Lett; 2024 Feb; 132(8):083202. PubMed ID: 38457716 [TBL] [Abstract][Full Text] [Related]
16. Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty. Nicholson TL; Campbell SL; Hutson RB; Marti GE; Bloom BJ; McNally RL; Zhang W; Barrett MD; Safronova MS; Strouse GF; Tew WL; Ye J Nat Commun; 2015 Apr; 6():6896. PubMed ID: 25898253 [TBL] [Abstract][Full Text] [Related]
17. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts. Safronova MS; Porsev SG; Clark CW Phys Rev Lett; 2012 Dec; 109(23):230802. PubMed ID: 23368178 [TBL] [Abstract][Full Text] [Related]
18. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock. Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a ^{88}Sr^{+} Optical Clock with a Direct Measurement of the Blackbody Radiation Shift and Determination of the Clock Frequency. Steinel M; Shao H; Filzinger M; Lipphardt B; Brinkmann M; Didier A; Mehlstäubler TE; Lindvall T; Peik E; Huntemann N Phys Rev Lett; 2023 Aug; 131(8):083002. PubMed ID: 37683165 [TBL] [Abstract][Full Text] [Related]