These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29695764)

  • 1. Integrative network analyses of wilt transcriptome in chickpea reveal genotype dependent regulatory hubs in immunity and susceptibility.
    Ashraf N; Basu S; Narula K; Ghosh S; Tayal R; Gangisetty N; Biswas S; Aggarwal PR; Chakraborty N; Chakraborty S
    Sci Rep; 2018 Apr; 8(1):6528. PubMed ID: 29695764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition.
    Chakraborty J; Sen S; Ghosh P; Jain A; Das S
    BMC Plant Biol; 2020 Jul; 20(1):319. PubMed ID: 32631232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1).
    Chatterjee M; Gupta S; Bhar A; Chakraborti D; Basu D; Das S
    BMC Genomics; 2014 Nov; 15(1):949. PubMed ID: 25363865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies.
    Upasani ML; Limaye BM; Gurjar GS; Kasibhatla SM; Joshi RR; Kadoo NY; Gupta VS
    Sci Rep; 2017 Aug; 7(1):7746. PubMed ID: 28798320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.).
    Gupta S; Bhar A; Chatterjee M; Das S
    PLoS One; 2013; 8(9):e73163. PubMed ID: 24058463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity.
    Ashraf N; Ghai D; Barman P; Basu S; Gangisetty N; Mandal MK; Chakraborty N; Datta A; Chakraborty S
    BMC Genomics; 2009 Sep; 10():415. PubMed ID: 19732460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection.
    Meshram S; Patel JS; Yadav SK; Kumar G; Singh DP; Singh HB; Sarma BK
    J Basic Microbiol; 2019 Jan; 59(1):74-86. PubMed ID: 30284310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome.
    Narula K; Elagamey E; Abdellatef MAE; Sinha A; Ghosh S; Chakraborty N; Chakraborty S
    Plant J; 2020 Jul; 103(2):561-583. PubMed ID: 32170889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Extracellular Matrix Proteomics Suggests Cell Wall Reprogramming in Host-Specific Immunity During Vascular Wilt Caused by Fusarium oxysporum in Chickpea.
    Elagamey E; Narula K; Sinha A; Ghosh S; Abdellatef MAE; Chakraborty N; Chakraborty S
    Proteomics; 2017 Dec; 17(23-24):. PubMed ID: 29144021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infection by Meloidogyne artiellia does not break down resistance to races 0, 1a, and 2 of Fusarium oxysporum f. sp. ciceris in chickpea genotypes.
    Navas-Cortés JA; Landa BB; Rodríguez-López J; Jiménez-Díaz RM; Castillo P
    Phytopathology; 2008 Jun; 98(6):709-18. PubMed ID: 18944296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inheritance of Resistance to Chickpea Fusarium Wilt Disease (
    Lakmes A; Jhar A; Sadanandom A; Brennan AC; Kahriman A
    Genes (Basel); 2024 Jun; 15(6):. PubMed ID: 38927754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis.
    Dong X; Jiang Z; Peng YL; Zhang Z
    Plant Physiol; 2015 Mar; 167(3):1186-203. PubMed ID: 25614062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceris race 5.
    Caballo C; Castro P; Gil J; Millan T; Rubio J; Die JV
    PLoS One; 2019; 14(10):e0224212. PubMed ID: 31644597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5.
    Palomares-Rius JE; Castillo P; Navas-Cortés JA; Jiménez-Díaz RM; Tena M
    J Proteomics; 2011 Sep; 74(10):2034-51. PubMed ID: 21640211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea.
    Chakraborty J; Priya P; Dastidar SG; Das S
    Plant Sci; 2018 Nov; 276():111-133. PubMed ID: 30348309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis.
    Gupta S; Chakraborti D; Rangi RK; Basu D; Das S
    Phytopathology; 2009 Nov; 99(11):1245-57. PubMed ID: 19821728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi.
    Matić S; Bagnaresi P; Biselli C; Orru' L; Amaral Carneiro G; Siciliano I; Valé G; Gullino ML; Spadaro D
    BMC Genomics; 2016 Aug; 17(1):608. PubMed ID: 27515776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1.
    Anjaiah V; Cornelis P; Koedam N
    Can J Microbiol; 2003 Feb; 49(2):85-91. PubMed ID: 12718396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Global Transcriptome and Co-expression Analysis Reveals Robust Host Defense Pathway Reprogramming and Identifies Key Regulators of Early Phases of
    Singh R; Dwivedi A; Singh Y; Kumar K; Ranjan A; Verma PK
    Mol Plant Microbe Interact; 2022 Nov; 35(11):1034-1047. PubMed ID: 35939621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways.
    Kumar Y; Dholakia BB; Panigrahi P; Kadoo NY; Giri AP; Gupta VS
    Phytochemistry; 2015 Aug; 116():120-129. PubMed ID: 25935544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.