These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29695764)

  • 21. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression.
    Upasani ML; Gurjar GS; Kadoo NY; Gupta VS
    PLoS One; 2016; 11(5):e0156490. PubMed ID: 27227745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes.
    García-Limones C; Dorado G; Navas-Cortés JA; Jiménez-Díaz RM; Tena M
    Plant Biol (Stuttg); 2009 Mar; 11(2):194-203. PubMed ID: 19228326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis reveals key genes associated with root-lesion nematode Pratylenchus thornei resistance in chickpea.
    Channale S; Kalavikatte D; Thompson JP; Kudapa H; Bajaj P; Varshney RK; Zwart RS; Thudi M
    Sci Rep; 2021 Sep; 11(1):17491. PubMed ID: 34471168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robustness of plant quantitative disease resistance is provided by a decentralized immune network.
    Delplace F; Huard-Chauveau C; Dubiella U; Khafif M; Alvarez E; Langin G; Roux F; Peyraud R; Roby D
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):18099-18109. PubMed ID: 32669441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay.
    Jiménez-Fernández D; Montes-Borrego M; Jiménez-Díaz RM; Navas-Cortés JA; Landa BB
    Phytopathology; 2011 Feb; 101(2):250-62. PubMed ID: 21219129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network-Based Comparative Analysis of Arabidopsis Immune Responses to Golovinomyces orontii and Botrytis cinerea Infections.
    Jiang Z; Dong X; Zhang Z
    Sci Rep; 2016 Jan; 6():19149. PubMed ID: 26750561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Marker Assisted Selection (MAS) for chickpea Fusarium oxysporum wilt resistant genotypes using PCR based molecular markers.
    Ahmad Z; Mumtaz AS; Ghafoor A; Ali A; Nisar M
    Mol Biol Rep; 2014 Oct; 41(10):6755-62. PubMed ID: 25017202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome landscape of a bacterial pathogen under plant immunity.
    Nobori T; Velásquez AC; Wu J; Kvitko BH; Kremer JM; Wang Y; He SY; Tsuda K
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3055-E3064. PubMed ID: 29531038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal and spatial changes in phenolic compounds in response to Fusarium wilt in chickpea and pigeonpea.
    Datta J; Lal N
    Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):96-102. PubMed ID: 23273197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.
    Thatcher LF; Williams AH; Garg G; Buck SG; Singh KB
    BMC Genomics; 2016 Nov; 17(1):860. PubMed ID: 27809762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.
    Gupta S; Chakraborti D; Sengupta A; Basu D; Das S
    PLoS One; 2010 Feb; 5(2):e9030. PubMed ID: 20140256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defence gene expression profiling to Ascochyta rabiei aggressiveness in chickpea.
    Leo AE; Linde CC; Ford R
    Theor Appl Genet; 2016 Jul; 129(7):1333-1345. PubMed ID: 27083569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of chickpea near-isogenic lines for Fusarium wilt.
    Castro P; Pistón F; Madrid E; Millán T; Gil J; Rubio J
    Theor Appl Genet; 2010 Nov; 121(8):1519-26. PubMed ID: 20652529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance.
    Wichmann F; Asp T; Widmer F; Kölliker R
    Theor Appl Genet; 2011 Feb; 122(3):567-79. PubMed ID: 20976589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).
    Rubio M; Ballester AR; Olivares PM; Castro de Moura M; Dicenta F; Martínez-Gómez P
    PLoS One; 2015; 10(12):e0144670. PubMed ID: 26658051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.
    Chetouhi C; Bonhomme L; Lasserre-Zuber P; Cambon F; Pelletier S; Renou JP; Langin T
    Funct Integr Genomics; 2016 Mar; 16(2):183-201. PubMed ID: 26797431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatula-Uromyces striatus interaction.
    Madrid E; Gil J; Rubiales D; Krajinski F; Schlereth A; Millán T
    Theor Appl Genet; 2010 Nov; 121(7):1311-21. PubMed ID: 20582581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics.
    Kumar Y; Zhang L; Panigrahi P; Dholakia BB; Dewangan V; Chavan SG; Kunjir SM; Wu X; Li N; Rajmohanan PR; Kadoo NY; Giri AP; Tang H; Gupta VS
    Plant Biotechnol J; 2016 Jul; 14(7):1589-603. PubMed ID: 26801007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of sesame resistance against Macrophomina phaseolina was revealed via a comparison of transcriptomes of resistant and susceptible sesame genotypes.
    Yan W; Ni Y; Liu X; Zhao H; Chen Y; Jia M; Liu M; Liu H; Tian B
    BMC Plant Biol; 2021 Mar; 21(1):159. PubMed ID: 33781203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack.
    Gupta S; Bhar A; Chatterjee M; Ghosh A; Das S
    PLoS One; 2017; 12(5):e0178164. PubMed ID: 28542579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.