These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29696469)

  • 1. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.
    Li K; Liu A; Wei D; Yu K; Sun X; Yan S; Huang Y
    Nanoscale Res Lett; 2018 Apr; 13(1):124. PubMed ID: 29696469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong confinement of gap modes induced by the film modified electric and magnetic modes in dielectric nanoparticle dimers.
    Shi J; Ju L; Zhang X; Huang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120465. PubMed ID: 34637984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.
    Pan L; Huang Y; Yang Y; Xiong W; Chen G; Su X; Wei H; Wang S; Wen W
    Sci Rep; 2015 Nov; 5():17223. PubMed ID: 26601698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC.
    Yi C; Kim TH; Jiao W; Yang Y; Lazarides A; Hingerl K; Bruno G; Brown A; Losurdo M
    Small; 2012 Sep; 8(17):2721-30. PubMed ID: 22674808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets.
    Sun S; Wu P
    Phys Chem Chem Phys; 2011 Dec; 13(47):21116-20. PubMed ID: 22020382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy.
    Wei W; Chen N; Nong J; Lan G; Wang W; Yi J; Tang L
    Opt Express; 2018 Jun; 26(13):16903-16916. PubMed ID: 30119509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic Energy Redistribution in Coupled Chiral Particle Chain-Film System.
    Tang Y; Huang Y; Qv L; Fang Y
    Nanoscale Res Lett; 2018 Jul; 13(1):194. PubMed ID: 29978337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates.
    Zhao Y; Li X; Du Y; Chen G; Qu Y; Jiang J; Zhu Y
    Nanoscale; 2014 Oct; 6(19):11112-20. PubMed ID: 25214169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent Enhancement of Dual-Path-Excited Remote SERS.
    Zhang L; Sun J; Li Z; Yuan Y; Liu A; Huang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32746-32751. PubMed ID: 32589011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy.
    McMahon JM; Henry AI; Wustholz KL; Natan MJ; Freeman RG; Van Duyne RP; Schatz GC
    Anal Bioanal Chem; 2009 Aug; 394(7):1819-25. PubMed ID: 19305981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film.
    Geshev PI; Fischer UC; Fuchs H
    Opt Express; 2007 Oct; 15(21):13796-804. PubMed ID: 19550650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-driven catalytic reactions in optoplasmonic sandwich hybrid structure.
    Zhang X; Xie X; Zhang L; Chen Z; Huang Y
    Appl Opt; 2023 Jan; 62(2):506-510. PubMed ID: 36630253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.
    Losurdo M; Yi C; Suvorova A; Rubanov S; Kim TH; Giangregorio MM; Jiao W; Bergmair I; Bruno G; Brown AS
    ACS Nano; 2014 Mar; 8(3):3031-41. PubMed ID: 24575951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector.
    Goldflam MD; Fei Z; Ruiz I; Howell SW; Davids PS; Peters DW; Beechem TE
    Opt Express; 2017 May; 25(11):12400-12408. PubMed ID: 28786595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.