These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2969647)

  • 21. Microbial transformation of the antihistamine pyrilamine maleate. Formation of potential mammalian metabolites.
    Hansen EB; Cerniglia CE; Korfmacher WA; Miller DW; Heflich RH
    Drug Metab Dispos; 1987; 15(1):97-106. PubMed ID: 2881765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organochlorine compounds from a terrestrial higher plant: structures and origin of chlorinated orcinol derivatives from diseased bulbs of Lilium maximowiczii.
    Monde K; Satoh H; Nakamura M; Tamura M; Takasugi M
    J Nat Prod; 1998 Jul; 61(7):913-21. PubMed ID: 9677274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial hydroxylation of 13-ethyl-17 beta-hydroxy-18,19-dinor-17 alpha-pregn-4-en-20-yn-3-one.
    Hu SH; Tian XF; Sun YH; Han GD
    Steroids; 1996 Jul; 61(7):407-10. PubMed ID: 8837292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preferential binding of radiolabeled zearalenone to a protein fraction of Fusarium roseum graminearum.
    Inaba T; Mirocha CJ
    Appl Environ Microbiol; 1979 Jan; 37(1):80-4. PubMed ID: 760640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of zearalenone to zearalenone glycoside by Rhizopus sp.
    Kamimura H
    Appl Environ Microbiol; 1986 Sep; 52(3):515-9. PubMed ID: 2945513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two novel microbial conversion products of progesterone derivatives.
    Krischenowski D; Kieslich K
    Steroids; 1993 Jun; 58(6):278-81. PubMed ID: 8212074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on the biosynthesis of phenols in fungi. Biosynthesis of 3,4-dimethoxy-6-methyltoluquinol and gliorosein in Gliocladium roseum I.M.I. 93 065.
    Packter NM; Steward MW
    Biochem J; 1967 Jan; 102(1):122-32. PubMed ID: 6067663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial transformation of azacarbazoles. IX. Preliminary studies on hydroxylation of 2,3-benzo-1,4-dimethyl-alpha-iso-carboline by Paecilomyces flavinosus.
    Peczyńska-Czoch W; Mordarski M; Kaczmarek L; Nantka-Namirski P
    Arch Immunol Ther Exp (Warsz); 1987; 35(2):143-6. PubMed ID: 3447531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steroid derivatives. LV. Microbial transformation of steroid compounds of the pregnane type substituted in position 16 and 17.
    Protiva J; Schwarz V; Martínková J; Syhora K
    Folia Microbiol (Praha); 1968; 13(2):146-52. PubMed ID: 5690652
    [No Abstract]   [Full Text] [Related]  

  • 30. Synthesis of glycols by microbial transformation of some monocyclic terpenes.
    Mukherjee BB; Kraidman G; Hill ID
    Appl Microbiol; 1973 Mar; 25(3):447-53. PubMed ID: 4698863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolites of Alternaria in grain sorghum. Compounds which could be mistaken for zearalenone and aflatoxin.
    Seitz LM; Sauer DB; Monr HE; Burroughs R; Paukstelis JV
    J Agric Food Chem; 1975; 23(1):1-4. PubMed ID: 1169265
    [No Abstract]   [Full Text] [Related]  

  • 32. Stereospecific microbial reduction of 4,5-dihydro-4-(4-methoxyphenyl)-6-(trifluoromethyl-1H-1)-benzazepin+ ++-2-o ne.
    Patel RN; Robison RS; Szarka LJ; Kloss J; Thottathil JK; Mueller RH
    Enzyme Microb Technol; 1991 Nov; 13(11):906-12. PubMed ID: 1368001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial reduction of aromatic carboxylic acids.
    Arfmann HA; Abraham WR
    Z Naturforsch C J Biosci; 1993; 48(1-2):52-7. PubMed ID: 8471102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial metabolism of bornaprine, 3-(diethylamino)propyl 2-phenylbicyclo[2.2.1]heptane-2-carboxylate.
    Elmarakby SA; Clark AM; Baker JK; Hufford CD
    J Pharm Sci; 1986 Jun; 75(6):614-8. PubMed ID: 3735109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbiologic transformation of progesterone by Curvularia clavata Jain.
    Vujcić M; Jankov RM
    Steroids; 1990 Jan; 55(1):17-21. PubMed ID: 2309253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial conversion of ruscogenin by Gliocladium deliquescens NRRL1086: glycosylation at C-1.
    Chen ND; Zhang J; Liu JH; Yu BY
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):491-7. PubMed ID: 19921181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycosylation and sulfation of emodin by Gliocladium deliquescens NRRL 1086.
    Xu SH; DU CH; Zhang J; Yu BY
    Chin J Nat Med; 2015 Oct; 13(10):796-800. PubMed ID: 26481382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transformation of aflatoxin B1 by steroid-hydroxylating fungi.
    Detroy RW; Hesseltine CW
    Can J Microbiol; 1969 Jun; 15(6):495-500. PubMed ID: 5816335
    [No Abstract]   [Full Text] [Related]  

  • 39. Biotransformation of 4beta-hydroxyeudesmane-1,6-dione by Gliocladium roseum and Exserohilum halodes.
    García-Granados A; Gutiérrez MC; Rivas F; Arias JM
    Phytochemistry; 2001 Nov; 58(6):891-5. PubMed ID: 11684186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbiological transformation of conessine. II.
    Marx AF; Beck HC; van der Waard WF; de Flines J
    Steroids; 1966 Oct; 8(4):421-34. PubMed ID: 6008426
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.