BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29696495)

  • 1. Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR).
    Neil CW; Jason Todd M; Jeffrey Yang Y
    Environ Geochem Health; 2018 Dec; 40(6):2453-2464. PubMed ID: 29696495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
    Mirecki JE; Bennett MW; López-Baláez MC
    Ground Water; 2013; 51(4):539-49. PubMed ID: 23106789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic release from Floridan Aquifer rock during incubations simulating aquifer storage and recovery operations.
    Jin J; Zimmerman AR; Norton SB; Annable MD; Harris WG
    Sci Total Environ; 2016 May; 551-552():238-45. PubMed ID: 26878636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review.
    Fakhreddine S; Prommer H; Scanlon BR; Ying SC; Nicot JP
    Environ Sci Technol; 2021 Feb; 55(4):2208-2223. PubMed ID: 33503373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic mobilization and attenuation by mineral-water interactions: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Jun YS
    J Environ Monit; 2012 Jul; 14(7):1772-88. PubMed ID: 22706181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.
    Fakhreddine S; Dittmar J; Phipps D; Dadakis J; Fendorf S
    Environ Sci Technol; 2015 Jul; 49(13):7802-9. PubMed ID: 26057865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of rainwater-borne hydrogen peroxide in the release of arsenic from arsenopyrite.
    Ma Y; Qin Y; Lin C
    Chemosphere; 2014 May; 103():349-53. PubMed ID: 24315179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic release from the abiotic oxidation of arsenopyrite under the impact of waterborne H2O2: a SEM and XPS study.
    Ma Y; Qin Y; Zheng B; Zhang L; Zhao Y
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1381-90. PubMed ID: 26362642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel insights into the kinetics and mechanism of arsenopyrite bio-dissolution enhanced by pyrite.
    Zhang DR; Zhang RY; Zhu XT; Kong WB; Cao C; Zheng L; Pakostova E
    J Hazard Mater; 2024 May; 470():134193. PubMed ID: 38569341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process-based reactive transport model to quantify arsenic mobility during aquifer storage and recovery of potable water.
    Wallis I; Prommer H; Pichler T; Post V; Norton SB; Annable MD; Simmons CT
    Environ Sci Technol; 2011 Aug; 45(16):6924-31. PubMed ID: 21718078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.
    Wallis I; Prommer H; Simmons CT; Post V; Stuyfzand PJ
    Environ Sci Technol; 2010 Jul; 44(13):5035-41. PubMed ID: 20518522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Fan XL; Liu HC; Zheng L; Zhang LJ; Yang HY
    J Hazard Mater; 2020 Feb; 384():121359. PubMed ID: 31635821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment Heterogeneity.
    Fakhreddine S; Prommer H; Gorelick SM; Dadakis J; Fendorf S
    Environ Sci Technol; 2020 Jul; 54(14):8728-8738. PubMed ID: 32516527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
    Deng S; Gu G; Wu Z; Xu X
    Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of arsenopyritic gold concentrates by partial bio-oxidation followed by bioreduction.
    Hol A; van der Weijden RD; Van Weert G; Kondos P; Buisman CJ
    Environ Sci Technol; 2011 Aug; 45(15):6316-21. PubMed ID: 21707056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The whole genome insight on condition-specific redox activity and arsenopyrite interaction promoting As-mobilization by strain Lysinibacillus sp. B2A1.
    Rathod J; Dhanani AS; Jean JS; Jiang WT
    J Hazard Mater; 2019 Feb; 364():671-681. PubMed ID: 30399550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic.
    Ramírez-Aldaba H; Valles OP; Vazquez-Arenas J; Rojas-Contreras JA; Valdez-Pérez D; Ruiz-Baca E; Meraz-Rodríguez M; Sosa-Rodríguez FS; Rodríguez ÁG; Lara RH
    Sci Total Environ; 2016 Oct; 566-567():1106-1119. PubMed ID: 27312277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.