These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29696590)

  • 1. Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow.
    Xu Z; Kleinstreuer C
    Med Biol Eng Comput; 2018 Nov; 56(11):1949-1958. PubMed ID: 29696590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous blood flow in microvessels with applications to nanodrug transport and mass transfer into tumor tissue.
    Xu Z; Kleinstreuer C
    Biomech Model Mechanobiol; 2019 Feb; 18(1):99-110. PubMed ID: 30105538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing cells to deliver nanoparticle drugs to treat cancer.
    Singh B; Mitragotri S
    Biotechnol Adv; 2020; 42():107339. PubMed ID: 30639928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy.
    Mou Q; Ma Y; Zhu X; Yan D
    J Control Release; 2016 May; 230():34-44. PubMed ID: 27040815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting DNA-mediated drug delivery in interior carcinoma using electromagnetically excited nanoparticles.
    Ghosh S; Das T; Chakraborty S; Das SK
    Comput Biol Med; 2011 Sep; 41(9):771-9. PubMed ID: 21752360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy.
    Zhang J; Tang H; Liu Z; Chen B
    Int J Nanomedicine; 2017; 12():8483-8493. PubMed ID: 29238188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of wall shear stress and ligand avidity on binding of anti-CD146-coated nanoparticles to murine tumor endothelium under flow.
    Thomann S; Baek S; Ryschich E
    Oncotarget; 2015 Nov; 6(37):39960-8. PubMed ID: 26503468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening.
    Millard M; Yakavets I; Zorin V; Kulmukhamedova A; Marchal S; Bezdetnaya L
    Int J Nanomedicine; 2017; 12():7993-8007. PubMed ID: 29184400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems.
    Villa CH; Anselmo AC; Mitragotri S; Muzykantov V
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt A):88-103. PubMed ID: 26941164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered Ferritin Nanoparticles for the Bioluminescence Tracking of Nanodrug Delivery in Cancer.
    Bellini M; Riva B; Tinelli V; Rizzuto MA; Salvioni L; Colombo M; Mingozzi F; Visioli A; Marongiu L; Frascotti G; Christodoulou MS; Passarella D; Prosperi D; Fiandra L
    Small; 2020 Oct; 16(39):e2001450. PubMed ID: 32856404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature.
    Sohrabi S; Wang S; Tan J; Xu J; Yang J; Liu Y
    J Biomech; 2017 Jan; 50():240-247. PubMed ID: 27863742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin.
    Chen WL; Li F; Tang Y; Yang SD; Li JZ; Yuan ZQ; Liu Y; Zhou XF; Liu C; Zhang XN
    Int J Nanomedicine; 2017; 12():4241-4256. PubMed ID: 28652730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.
    Mistry A; Stolnik S; Illum L
    Mol Pharm; 2015 Aug; 12(8):2755-66. PubMed ID: 25997083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computationally efficient particle release map determination for direct tumor-targeting in a representative hepatic artery system.
    Childress EM; Kleinstreuer C
    J Biomech Eng; 2014 Jan; 136(1):011012. PubMed ID: 24190601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.
    Islam MA; Barua S; Barua D
    BMC Syst Biol; 2017 Nov; 11(1):113. PubMed ID: 29178887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Nanoparticle Stability under Blood Flow Shear.
    Guo WX; Hu LF; Feng YH; Liu Y; Jing LY; Chen BZ; Guo XD
    Langmuir; 2022 Oct; 38(41):12731-12738. PubMed ID: 36201874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue.
    Roy U; Ding H; Pilakka-Kanthikeel S; Raymond AD; Atluri V; Yndart A; Kaftanovskaya EM; Batrakova E; Agudelo M; Nair M
    Int J Nanomedicine; 2015; 10():5819-35. PubMed ID: 26425084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.