These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 29696695)
1. Mimicking a p53-MDM2 interaction based on a stable immunoglobulin-like domain scaffold. Jimenez-Sandoval P; Madrigal-Carrillo EA; Santamaría-Suárez HA; Maturana D; Rentería-González I; Benitez-Cardoza CG; Torres-Larios A; Brieba LG Proteins; 2018 Jul; 86(7):802-812. PubMed ID: 29696695 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: functional convergence of a common protein fold. Casados-Vázquez LE; Lara-González S; Brieba LG Gene; 2011 Jan; 471(1-2):45-52. PubMed ID: 20951777 [TBL] [Abstract][Full Text] [Related]
3. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. Hu M; Gu L; Li M; Jeffrey PD; Gu W; Shi Y PLoS Biol; 2006 Feb; 4(2):e27. PubMed ID: 16402859 [TBL] [Abstract][Full Text] [Related]
4. Solution structure of the inhibitor of cysteine proteases 1 from Entamoeba histolytica reveals a possible auto regulatory mechanism. Flores-Solis D; Mendoza A; Rentería-González I; Casados-Vazquez LE; Trasviña-Arenas CH; Jiménez-Sandoval P; Benítez-Cardoza CG; Del Río-Portilla F; Brieba LG Biochim Biophys Acta Proteins Proteom; 2020 Nov; 1868(11):140512. PubMed ID: 32731033 [TBL] [Abstract][Full Text] [Related]
5. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. Estrada-Ortiz N; Neochoritis CG; Dömling A ChemMedChem; 2016 Apr; 11(8):757-72. PubMed ID: 26676832 [TBL] [Abstract][Full Text] [Related]
6. Cysteine Proteases Inhibitors with Immunoglobulin-Like Fold in Protozoan Parasites and their Role in Pathogenesis. Jimenez-Sandoval P; Lopez-Castillo LM; Trasviña-Arenas CH; Brieba LG Curr Protein Pept Sci; 2017; 18(10):1035-1042. PubMed ID: 27526930 [TBL] [Abstract][Full Text] [Related]
7. Crystallographic analysis of an 8-mer p53 peptide analogue complexed with MDM2. Sakurai K; Schubert C; Kahne D J Am Chem Soc; 2006 Aug; 128(34):11000-1. PubMed ID: 16925398 [TBL] [Abstract][Full Text] [Related]
8. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Sheng Y; Saridakis V; Sarkari F; Duan S; Wu T; Arrowsmith CH; Frappier L Nat Struct Mol Biol; 2006 Mar; 13(3):285-91. PubMed ID: 16474402 [TBL] [Abstract][Full Text] [Related]
9. Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Shin JS; Ha JH; Chi SW Biochem Biophys Res Commun; 2014 Jan; 443(3):882-7. PubMed ID: 24342622 [TBL] [Abstract][Full Text] [Related]
10. Structure of the stapled p53 peptide bound to Mdm2. Baek S; Kutchukian PS; Verdine GL; Huber R; Holak TA; Lee KW; Popowicz GM J Am Chem Soc; 2012 Jan; 134(1):103-6. PubMed ID: 22148351 [TBL] [Abstract][Full Text] [Related]
11. Recognition Dynamics of p53 and MDM2: Implications for Peptide Design. ElSawy KM; Lane DP; Verma CS; Caves LS J Phys Chem B; 2016 Jan; 120(2):320-8. PubMed ID: 26701330 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins. Lee MS; Ha JH; Yoon HS; Lee CK; Chi SW Biochem Biophys Res Commun; 2014 Feb; 445(1):120-5. PubMed ID: 24491548 [TBL] [Abstract][Full Text] [Related]
13. Inhibitors of MDM2 and MDMX: a structural perspective. Riedinger C; McDonnell JM Future Med Chem; 2009 Sep; 1(6):1075-94. PubMed ID: 21425995 [TBL] [Abstract][Full Text] [Related]
14. A Fusion Protein of the p53 Transaction Domain and the p53-Binding Domain of the Oncoprotein MdmX as an Efficient System for High-Throughput Screening of MdmX Inhibitors. Chen R; Zhou J; Qin L; Chen Y; Huang Y; Liu H; Su Z Biochemistry; 2017 Jun; 56(25):3273-3282. PubMed ID: 28581721 [TBL] [Abstract][Full Text] [Related]
16. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Ciemny MP; Debinski A; Paczkowska M; Kolinski A; Kurcinski M; Kmiecik S Sci Rep; 2016 Dec; 6():37532. PubMed ID: 27905468 [TBL] [Abstract][Full Text] [Related]
17. Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. Surmiak E; Neochoritis CG; Musielak B; Twarda-Clapa A; Kurpiewska K; Dubin G; Camacho C; Holak TA; Dömling A Eur J Med Chem; 2017 Jan; 126():384-407. PubMed ID: 27907876 [TBL] [Abstract][Full Text] [Related]
18. S100A1 blocks the interaction between p53 and mdm2 and decreases cell proliferation activity. Dowarha D; Chou RH; Yu C PLoS One; 2020; 15(6):e0234152. PubMed ID: 32497081 [TBL] [Abstract][Full Text] [Related]
19. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. Li C; Pazgier M; Li C; Yuan W; Liu M; Wei G; Lu WY; Lu W J Mol Biol; 2010 Apr; 398(2):200-13. PubMed ID: 20226197 [TBL] [Abstract][Full Text] [Related]
20. A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction. Surmiak E; Twarda-Clapa A; Zak KM; Musielak B; Tomala MD; Kubica K; Grudnik P; Madej M; Jablonski M; Potempa J; Kalinowska-Tluscik J; Dömling A; Dubin G; Holak TA ACS Chem Biol; 2016 Dec; 11(12):3310-3318. PubMed ID: 27709883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]