BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2969698)

  • 1. Influence of ligands on the aggregation of the normal and mutant forms of phosphofructokinase 2 of Escherichia coli.
    Guixé V; Babul J
    Arch Biochem Biophys; 1988 Aug; 264(2):519-24. PubMed ID: 2969698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ATP on phosphofructokinase-2 from Escherichia coli. A mutant enzyme altered in the allosteric site for MgATP.
    Guixé V; Babul J
    J Biol Chem; 1985 Sep; 260(20):11001-5. PubMed ID: 3161887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties.
    Guixé V
    Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
    Guixé V; Rodríguez PH; Babul J
    Biochemistry; 1998 Sep; 37(38):13269-75. PubMed ID: 9748334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase.
    Pham AS; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4150-8. PubMed ID: 11300796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition.
    Cabrera R; Baez M; Pereira HM; Caniuguir A; Garratt RC; Babul J
    J Biol Chem; 2011 Feb; 286(7):5774-83. PubMed ID: 21147773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MgATP and fructose 6-phosphate interactions with phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1992 Nov; 31(46):11510-8. PubMed ID: 1445885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation of the quaternary structure and allosteric behavior of rat liver phosphofructokinase by polyethylene glycol.
    Reinhart GD; Hartleip SB
    Arch Biochem Biophys; 1987 Oct; 258(1):65-76. PubMed ID: 2959201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent binding of MgADP to the E187A mutant of Escherichia coli phosphofructokinase in the absence of allosteric effects.
    Pham AS; Janiak-Spens F; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4140-9. PubMed ID: 11300795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of MgADP on phosphofructokinase from Escherichia coli. Elucidation of coupling interactions with both substrates.
    Johnson JL; Reinhart GD
    Biochemistry; 1994 Mar; 33(9):2635-43. PubMed ID: 8117726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro model showing different rates of substrate cycle for phosphofructokinases of Escherichia coli with different kinetic properties.
    Torres JC; Babul J
    Eur J Biochem; 1991 Sep; 200(2):471-6. PubMed ID: 1653703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of a two-state model to describe the influence of phospho(enol)pyruvate on phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1997 Oct; 36(42):12814-22. PubMed ID: 9335538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible high hydrostatic pressure inactivation of phosphofructokinase from Escherichia coli.
    Deville-Bonne D; Else AJ
    Eur J Biochem; 1991 Sep; 200(3):747-50. PubMed ID: 1833191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal regulation of fructose 1,6-bisphosphatase and phosphofructokinase by fructose 2,6-bisphosphate in swine kidney.
    Muniyappa K; Leibach FH; Mendicino J
    Life Sci; 1983 Jan; 32(3):271-8. PubMed ID: 6218355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium binding studies of a tryptophan-shifted mutant of phosphofructokinase from Bacillus stearothermophilus.
    Riley-Lovingshimer MR; Reinhart GD
    Biochemistry; 2001 Mar; 40(9):3002-8. PubMed ID: 11258913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling the MgATP-induced inhibition and aggregation of Escherichia coli phosphofructokinase-2 by C-terminal mutations.
    Baez M; Merino F; Astorga G; Babul J
    FEBS Lett; 2008 Jun; 582(13):1907-12. PubMed ID: 18501195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active-site mutants altering the cooperativity of E. coli phosphofructokinase.
    Berger SA; Evans PR
    Nature; 1990 Feb; 343(6258):575-6. PubMed ID: 2137204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a specific phosphoryl binding site in swine kidney phosphofructokinase.
    Ashkar S; Muniyappa K; Leibach F; Mendicino J
    Mol Cell Biochem; 1984 Apr; 62(1):77-92. PubMed ID: 6234453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ribokinase family conserved monovalent cation binding site enhances the MgATP-induced inhibition in E. coli phosphofructokinase-2.
    Baez M; Cabrera R; Pereira HM; Blanco A; Villalobos P; Ramírez-Sarmiento CA; Caniuguir A; Guixé V; Garratt RC; Babul J
    Biophys J; 2013 Jul; 105(1):185-93. PubMed ID: 23823238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.