BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 29697006)

  • 21. Interaction of colloidal zinc oxide nanoparticles with bovine serum albumin and its adsorption isotherms and kinetics.
    Sasidharan NP; Chandran P; Sudheer Khan S
    Colloids Surf B Biointerfaces; 2013 Feb; 102():195-201. PubMed ID: 23000680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions.
    Wang B; Zhang Y; Mao Z; Yu D; Gao C
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5688-96. PubMed ID: 25935990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells.
    Hsiao IL; Huang YJ
    Sci Total Environ; 2011 Mar; 409(7):1219-28. PubMed ID: 21255821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.
    Everett WN; Chern C; Sun D; McMahon RE; Zhang X; Chen WJ; Hahn MS; Sue HJ
    Toxicol Lett; 2014 Feb; 225(1):177-84. PubMed ID: 24362007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells.
    Ramasamy M; Das M; An SS; Yi DK
    Int J Nanomedicine; 2014; 9():3707-18. PubMed ID: 25143723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of distribution and toxicity of different types of zinc-based nanoparticles.
    Park EJ; Jeong U; Yoon C; Kim Y
    Environ Toxicol; 2017 Apr; 32(4):1363-1374. PubMed ID: 27510841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide.
    Gong Y; Ji Y; Liu F; Li J; Cao Y
    J Appl Toxicol; 2017 Aug; 37(8):895-901. PubMed ID: 27862064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles.
    Esparza-González SC; Sánchez-Valdés S; Ramírez-Barrón SN; Loera-Arias MJ; Bernal J; Meléndez-Ortiz HI; Betancourt-Galindo R
    Toxicol In Vitro; 2016 Dec; 37():134-141. PubMed ID: 27666655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reducing ZnO nanoparticle cytotoxicity by surface modification.
    Luo M; Shen C; Feltis BN; Martin LL; Hughes AE; Wright PF; Turney TW
    Nanoscale; 2014 Jun; 6(11):5791-8. PubMed ID: 24740013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach.
    Senapati VA; Kumar A; Gupta GS; Pandey AK; Dhawan A
    Food Chem Toxicol; 2015 Nov; 85():61-70. PubMed ID: 26146191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size, Surface Properties, and Ion Release of Zinc Oxide Nanoparticles: Effects on Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition in Neuronal PC-12 Cells.
    Suthar JK; Vaidya A; Ravindran S
    Biol Trace Elem Res; 2024 May; 202(5):2254-2271. PubMed ID: 37713055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genotoxic effects of zinc oxide nanoparticles.
    Heim J; Felder E; Tahir MN; Kaltbeitzel A; Heinrich UR; Brochhausen C; Mailänder V; Tremel W; Brieger J
    Nanoscale; 2015 May; 7(19):8931-8. PubMed ID: 25916659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are zinc oxide nanoparticles safe? A structural study on human serum albumin using
    Hassanian M; Aryapour H; Goudarzi A; Javan MB
    J Biomol Struct Dyn; 2021 Jan; 39(1):330-335. PubMed ID: 31994452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction mechanism between ZnO nanoparticles-whey protein and its effect on toxicity in GES-1 cells.
    Yuan E; Zhou M; Nie S; Ren J
    J Food Sci; 2022 Jun; 87(6):2417-2426. PubMed ID: 35590487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells.
    Seker S; Elçin AE; Yumak T; Sınağ A; Elçin YM
    Toxicol In Vitro; 2014 Dec; 28(8):1349-58. PubMed ID: 25016134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
    Fleischer CC; Payne CK
    Acc Chem Res; 2014 Aug; 47(8):2651-9. PubMed ID: 25014679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin.
    Chakraborti S; Joshi P; Chakravarty D; Shanker V; Ansari ZA; Singh SP; Chakrabarti P
    Langmuir; 2012 Jul; 28(30):11142-52. PubMed ID: 22746363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of particle size and dispersion status on cytotoxicity and genotoxicity of zinc oxide in human bronchial epithelial cells.
    Roszak J; Catalán J; Järventaus H; Lindberg HK; Suhonen S; Vippola M; Stępnik M; Norppa H
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Jul; 805():7-18. PubMed ID: 27402478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyanidin chloride modestly protects Caco-2 cells from ZnO nanoparticle exposure probably through the induction of autophagy.
    Jiang L; Li Z; Xie Y; Liu L; Cao Y
    Food Chem Toxicol; 2019 May; 127():251-259. PubMed ID: 30922967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.