These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29697159)

  • 1. Photoinduced Release of a Chemical Fuel for Acid-Base-Operated Molecular Machines.
    Biagini C; Di Pietri F; Mandolini L; Lanzalunga O; Di Stefano S
    Chemistry; 2018 Jul; 24(40):10122-10127. PubMed ID: 29697159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hydrolysis of the Anhydride of 2-Cyano-2-phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid-Base Operated Molecular Switch.
    Biagini C; Capocasa G; Cataldi V; Del Giudice D; Mandolini L; Di Stefano S
    Chemistry; 2019 Nov; 25(66):15205-15211. PubMed ID: 31573109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in the fuel structure control the rate of the back and forth motions of a chemically fuelled molecular switch.
    Biagini C; Albano S; Caruso R; Mandolini L; Berrocal JA; Di Stefano S
    Chem Sci; 2018 Jan; 9(1):181-188. PubMed ID: 29629086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch.
    Berrocal JA; Biagini C; Mandolini L; Di Stefano S
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6997-7001. PubMed ID: 27145060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.
    Del Giudice D; Di Stefano S
    Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines.
    Biagini C; Capocasa G; Del Giudice D; Cataldi V; Mandolini L; Di Stefano S
    Org Biomol Chem; 2020 May; 18(20):3867-3873. PubMed ID: 32373832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abiotic Chemical Fuels for the Operation of Molecular Machines.
    Biagini C; Di Stefano S
    Angew Chem Int Ed Engl; 2020 May; 59(22):8344-8354. PubMed ID: 31898850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Cyano-2-phenylpropanoic Acid Triggers the Back and Forth Motions of an Acid-Base-Operated Paramagnetic Molecular Switch.
    Franchi P; Poderi C; Mezzina E; Biagini C; Di Stefano S; Lucarini M
    J Org Chem; 2019 Jul; 84(14):9364-9368. PubMed ID: 31203619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact chemically driven [2]catenane rotary motor operated through alternate pumping and discharging.
    Li A; Du Z; Zhang S; Xie J; Li X; Chen Q; Tang Y; Chen J; Zhu K
    Chem Sci; 2024 Aug; 15(36):14721-5. PubMed ID: 39176243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-based machines.
    Wang F; Willner B; Willner I
    Top Curr Chem; 2014; 354():279-338. PubMed ID: 24647836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotary and linear molecular motors driven by pulses of a chemical fuel.
    Erbas-Cakmak S; Fielden SDP; Karaca U; Leigh DA; McTernan CT; Tetlow DJ; Wilson MR
    Science; 2017 Oct; 358(6361):340-343. PubMed ID: 29051374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipative Catalysis with a Molecular Machine.
    Biagini C; Fielden SDP; Leigh DA; Schaufelberger F; Di Stefano S; Thomas D
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9876-9880. PubMed ID: 31111628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength Selective Generation of Aryl Radicals and Aryl Cations for Metal-Free Photoarylations.
    Crespi S; Protti S; Fagnoni M
    J Org Chem; 2016 Oct; 81(20):9612-9619. PubMed ID: 27696841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pyridinium/anilinium [2]catenane that operates as an acid-base driven optical switch.
    Vella SJ; Loeb SJ
    Beilstein J Org Chem; 2018; 14():1908-1916. PubMed ID: 30112096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switched "On" Transient Fluorescence Output from a Pulsed-Fuel Molecular Ratchet.
    Baluna AS; Dommaschk M; Groh B; Kassem S; Leigh DA; Tetlow DJ; Thomas D; Varela López L
    J Am Chem Soc; 2023 Dec; 145(49):27113-27119. PubMed ID: 38047919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time Programmable Locking/Unlocking of the Calix[4]arene Scaffold by Means of Chemical Fuels.
    Del Giudice D; Spatola E; Cacciapaglia R; Casnati A; Baldini L; Ercolani G; Di Stefano S
    Chemistry; 2020 Nov; 26(65):14954-14962. PubMed ID: 32757429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Dual Molecular Pumps Electrochemically.
    Pezzato C; Nguyen MT; Kim DJ; Anamimoghadam O; Mosca L; Stoddart JF
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9325-9329. PubMed ID: 29774639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-light-driven methane formation from CO
    Rao H; Schmidt LC; Bonin J; Robert M
    Nature; 2017 Aug; 548(7665):74-77. PubMed ID: 28723895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Autonomously Reciprocating Transmembrane Nanoactuator.
    Watson MA; Cockroft SL
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1345-9. PubMed ID: 26661295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.