These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29697841)

  • 1. Cortical region-specific sleep homeostasis in mice: effects of time of day and waking experience.
    Guillaumin MCC; McKillop LE; Cui N; Fisher SP; Foster RG; de Vos M; Peirson SN; Achermann P; Vyazovskiy VV
    Sleep; 2018 Jul; 41(7):. PubMed ID: 29697841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crepuscular rhythms of EEG sleep-wake in a hystricomorph rodent, Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 1998 Feb; 13(1):9-17. PubMed ID: 9486839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waking experience modulates sleep need in mice.
    Milinski L; Fisher SP; Cui N; McKillop LE; Blanco-Duque C; Ang G; Yamagata T; Bannerman DM; Vyazovskiy VV
    BMC Biol; 2021 Apr; 19(1):65. PubMed ID: 33823872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep/wake movement velocities, trajectories and micro-arousals during maturation in rats.
    Gradwohl G; Olini N; Huber R
    BMC Neurosci; 2017 Feb; 18(1):24. PubMed ID: 28173758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topography of EEG dynamics after sleep deprivation in mice.
    Huber R; Deboer T; Tobler I
    J Neurophysiol; 2000 Oct; 84(4):1888-93. PubMed ID: 11024081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenging sleep homeostasis in narcolepsy-cataplexy: implications for non-REM and REM sleep regulation.
    Khatami R; Landolt HP; Achermann P; Adam M; Rétey JV; Werth E; Schmid D; Bassetti CL
    Sleep; 2008 Jun; 31(6):859-67. PubMed ID: 18548831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep and sleep homeostasis in constant darkness in the rat.
    Deboer T
    J Sleep Res; 2009 Sep; 18(3):357-64. PubMed ID: 19552704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep homeostasis in the rat in the light and dark period.
    Vyazovskiy VV; Achermann P; Tobler I
    Brain Res Bull; 2007 Sep; 74(1-3):37-44. PubMed ID: 17683787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian regulation of sleep and the sleep EEG under constant sleep pressure in the rat.
    Yasenkov R; Deboer T
    Sleep; 2010 May; 33(5):631-41. PubMed ID: 20469805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations.
    Achermann P; Dijk DJ; Brunner DP; Borbély AA
    Brain Res Bull; 1993; 31(1-2):97-113. PubMed ID: 8453498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-dependent effects of light-dark cycle on somatosensory and visual cortex EEG in rats.
    Yasuda T; Yasuda K; Brown RA; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R1083-9. PubMed ID: 16183627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for differential human slow-wave activity regulation across the brain.
    Zavada A; Strijkstra AM; Boerema AS; Daan S; Beersma DG
    J Sleep Res; 2009 Mar; 18(1):3-10. PubMed ID: 19021858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.
    Grønli J; Rempe MJ; Clegern WC; Schmidt M; Wisor JP
    J Sleep Res; 2016 Jun; 25(3):257-68. PubMed ID: 26825702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological correlates of sleep homeostasis in freely behaving rats.
    Vyazovskiy VV; Cirelli C; Tononi G
    Prog Brain Res; 2011; 193():17-38. PubMed ID: 21854953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered overnight modulation of spontaneous waking EEG reflects altered sleep homeostasis in major depressive disorder: a high-density EEG investigation.
    Plante DT; Goldstein MR; Landsness EC; Riedner BA; Guokas JJ; Wanger T; Tononi G; Benca RM
    J Affect Disord; 2013 Sep; 150(3):1167-73. PubMed ID: 23810359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep homeostasis during daytime food entrainment in mice.
    Northeast RC; Huang Y; McKillop LE; Bechtold DA; Peirson SN; Piggins HD; Vyazovskiy VV
    Sleep; 2019 Oct; 42(11):. PubMed ID: 31329251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness.
    Cajochen C; Wyatt JK; Czeisler CA; Dijk DJ
    Neuroscience; 2002; 114(4):1047-60. PubMed ID: 12379258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Period-amplitude analysis reveals wake-dependent changes in the electroencephalogram during sleep deprivation.
    Ehlen JC; Jefferson F; Brager AJ; Benveniste M; Paul KN
    Sleep; 2013 Nov; 36(11):1723-35. PubMed ID: 24179307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.