These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 29697877)

  • 1. Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields.
    He W; Liu P; Zhang J; Yao X
    Chemistry; 2018 Oct; 24(56):14864-14877. PubMed ID: 29697877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired surfaces with wettability for antifouling application.
    Li Z; Guo Z
    Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.
    Wong TS; Kang SH; Tang SK; Smythe EJ; Hatton BD; Grinthal A; Aizenberg J
    Nature; 2011 Sep; 477(7365):443-7. PubMed ID: 21938066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring Materials with Specific Wettability in Biomedical Engineering.
    Sun L; Guo J; Chen H; Zhang D; Shang L; Zhang B; Zhao Y
    Adv Sci (Weinh); 2021 Oct; 8(19):e2100126. PubMed ID: 34369090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-Infused Surfaces: A Review of Theory, Design, and Applications.
    Villegas M; Zhang Y; Abu Jarad N; Soleymani L; Didar TF
    ACS Nano; 2019 Aug; 13(8):8517-8536. PubMed ID: 31373794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Bioinspired Anti-Biofouling Surfaces based on a Superwettability Strategy.
    Zhang P; Lin L; Zang D; Guo X; Liu M
    Small; 2017 Jan; 13(4):. PubMed ID: 26917251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact angle measurement of natural materials.
    Zhao T; Jiang L
    Colloids Surf B Biointerfaces; 2018 Jan; 161():324-330. PubMed ID: 29096377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microengineered hydrogels for tissue engineering.
    Khademhosseini A; Langer R
    Biomaterials; 2007 Dec; 28(34):5087-92. PubMed ID: 17707502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Lubrication and Surface Interactions of Dopamine-Assisted Zwitterionic Polyelectrolyte Coatings.
    Han L; Xiang L; Zhang J; Chen J; Liu J; Yan B; Zeng H
    Langmuir; 2018 Sep; 34(38):11593-11601. PubMed ID: 30156852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of trapped air and lubricant in the interactions between fouling and SiO
    He X; Tian F; Bai X; Yuan C
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110502. PubMed ID: 31542644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design considerations when using semicrystalline engineering polymers.
    Poppe EA; Norrey C; Rodon T
    Med Device Technol; 2005 Sep; 16(7):12-5. PubMed ID: 16259152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized liquid layers: A new approach to anti-adhesion surfaces for medical applications.
    Sotiri I; Overton JC; Waterhouse A; Howell C
    Exp Biol Med (Maywood); 2016 May; 241(9):909-18. PubMed ID: 27022136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slippery Antifouling Polymer Coatings Fabricated Entirely from Biodegradable and Biocompatible Components.
    Agarwal H; Quinn LJ; Walter SC; Polaske TJ; Chang DH; Palecek SP; Blackwell HE; Lynn DM
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17940-17949. PubMed ID: 35394750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic electrospun nanofibers for tissue regeneration.
    Liao S; Li B; Ma Z; Wei H; Chan C; Ramakrishna S
    Biomed Mater; 2006 Sep; 1(3):R45-53. PubMed ID: 18458387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review.
    Richards C; Slaimi A; O'Connor NE; Barrett A; Kwiatkowska S; Regan F
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32709068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character.
    van der Zwaag S; van Dijk NH; Jonkers HM; Mookhoek SD; Sloof WG
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1689-704. PubMed ID: 19376766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired and biomimetic systems for advanced drug and gene delivery.
    Sabu C; Rejo C; Kotta S; Pramod K
    J Control Release; 2018 Oct; 287():142-155. PubMed ID: 30165138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic approaches for tissue engineering.
    Reddy R; Reddy N
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1667-1685. PubMed ID: 29998794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review.
    Xu Y; Luan X; He P; Zhu D; Mu R; Wang Y; Wei G
    Small; 2024 May; 20(21):e2308091. PubMed ID: 38088535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slippery liquid-infused porous surfaces showing marine antibiofouling properties.
    Xiao L; Li J; Mieszkin S; Di Fino A; Clare AS; Callow ME; Callow JA; Grunze M; Rosenhahn A; Levkin PA
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10074-80. PubMed ID: 24067279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.