BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 29698219)

  • 41. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies.
    Jin T; Yuan W; Xue Y; Wei H; Zhang C; Li K
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5238-5248. PubMed ID: 28004365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: Synthesis, characterization, kinetic and isotherm studies.
    Gouthaman A; Azarudeen RS; Gnanaprakasam A; Sivakumar VM; Thirumarimurugan M
    Ecotoxicol Environ Saf; 2018 Sep; 160():42-51. PubMed ID: 29783111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposites as water-dispersible adsorbents for the removal of the oxytetracycline antibiotic from aqueous solutions: adsorption performance, effects of coexisting ions, and natural organic matter.
    Prarat P; Hongsawat P; Punyapalakul P
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6560-6576. PubMed ID: 31873904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and Application of Carboxylated Graphene Oxide Sponge in Dye Removal.
    Zhao L; Yang ST; Feng S; Ma Q; Peng X; Wu D
    Int J Environ Res Public Health; 2017 Oct; 14(11):. PubMed ID: 29072622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution.
    Sheshmani S; Akhundi Nematzadeh M; Shokrollahzadeh S; Ashori A
    Int J Biol Macromol; 2015 Sep; 80():475-80. PubMed ID: 26187194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetically recoverable Fe
    Boruah PK; Sharma B; Hussain N; Das MR
    Chemosphere; 2017 Feb; 168():1058-1067. PubMed ID: 27836281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites.
    Hosseinzadeh H; Ramin S
    Int J Biol Macromol; 2018 Jul; 113():859-868. PubMed ID: 29524485
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of graphene oxide/inulin impregnated with ZnO nanoparticles for efficient removal of enrofloxacin from water: Taguchi-optimized experimental analysis.
    Rahman N; Raheem A
    J Environ Manage; 2022 Sep; 318():115525. PubMed ID: 35724574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-assembled three-dimensional reduced graphene oxide-based hydrogel for highly efficient and facile removal of pharmaceutical compounds from aqueous solution.
    Umbreen N; Sohni S; Ahmad I; Khattak NU; Gul K
    J Colloid Interface Sci; 2018 Oct; 527():356-367. PubMed ID: 29843021
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite.
    do Nascimento BF; de Araújo CMB; Del Carmen Pinto Osorio D; Silva LFO; Dotto GL; Cavalcanti JVFL; da Motta Sobrinho MA
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):85344-85358. PubMed ID: 37382818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe
    Foroughi M; Ahmadi Azqhandi MH; Kakhki S
    J Hazard Mater; 2020 Apr; 388():121769. PubMed ID: 31848088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption of tricresyl phosphate onto graphene nanomaterials from aqueous solution.
    Liu J; Xia S; Lü X; Shen H
    Water Sci Technol; 2017 Sep; 76(5-6):1565-1573. PubMed ID: 28953482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of phenol from aqueous solutions by magnetic oxide graphene nanoparticles modified with ionic liquids using the Taguchi optimization approach.
    Gholami-Bonabi L; Ziaefar N; Sheikhloie H
    Water Sci Technol; 2020 Jan; 81(2):228-240. PubMed ID: 32333656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption of low-concentration mercury in water by 3D cyclodextrin/graphene composites: Synergistic effect and enhancement mechanism.
    Qiu P; Wang S; Tian C; Lin Z
    Environ Pollut; 2019 Sep; 252(Pt B):1133-1141. PubMed ID: 31252111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient photocatalytic degradation of metronidazole from aqueous solutions using Co/g-C
    Yeganeh M; Sobhi HR; Esrafili A
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25486-25495. PubMed ID: 34843049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite.
    Sherlala AIA; Raman AAA; Bello MM; Buthiyappan A
    J Environ Manage; 2019 Sep; 246():547-556. PubMed ID: 31202019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differentiation Between Metronidazole Residues Disposal by Using Adsorption and Photodegradation Processes Onto MgO Nanoparticles.
    El Bouraie M; Ibrahim S
    Int J Nanomedicine; 2020; 15():7117-7141. PubMed ID: 33061371
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication and implementation of bimetallic Fe/Zn nanoparticles (mole ratio 1:1) loading on hydroxyethylcellulose - Graphene oxide for removal of tetracycline antibiotic from aqueous solution.
    SefidSiahbandi M; Moradi O; Akbari-Adergani B; Azar PA; Tehrani MS
    Chemosphere; 2023 Jan; 312(Pt 1):137184. PubMed ID: 36400191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clarified sludge (basic oxygen furnace sludge)--an adsorbent for removal of Pb(II) from aqueous solutions--kinetics, thermodynamics and desorption studies.
    Naiya TK; Bhattacharya AK; Das SK
    J Hazard Mater; 2009 Oct; 170(1):252-62. PubMed ID: 19520500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.