BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29698241)

  • 1. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland.
    Hadad HR; Mufarrege MM; Di Luca GA; Maine MA
    Water Sci Technol; 2017 Apr; 2017(1):270-275. PubMed ID: 29698241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floating aquatic macrophytes for the treatment of aquaculture effluents.
    de Vasconcelos VM; de Morais ERC; Faustino SJB; Hernandez MCR; Gaudêncio HRDSC; de Melo RR; Bessa Junior AP
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):2600-2607. PubMed ID: 33125679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina).
    Alonso X; Hadad HR; Córdoba C; Polla W; Reyes MS; Fernández V; Granados I; Marino L; Villalba A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):312-323. PubMed ID: 29034426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland.
    Di Luca GA; Mufarrege MM; Hadad HR; Maine MA
    Sci Total Environ; 2019 Feb; 650(Pt 1):233-240. PubMed ID: 30196224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptability of Typha domingensis to high pH and salinity.
    Mufarrege MM; Di Luca GA; Hadad HR; Maine MA
    Ecotoxicology; 2011 Mar; 20(2):457-65. PubMed ID: 21287266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of organic matter degradation kinetics and nutrient removal on artificial wetlands using Eichhornia crassipes and Typha domingensis.
    Rangel-Peraza JG; Mendivil-García K; Cedillo-Herrera CIG; Rochín-Medina JJ; Rodríguez-Mata AE; Bustos-Terrones YA
    Environ Technol; 2019 Feb; 40(5):633-641. PubMed ID: 29096581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root growth and nutrient removal of Typha domingensis and Schoenoplectus californicus over the period of plant establishment in a constructed floating wetland.
    Rigotti JA; Paqualini JP; Rodrigues LR
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8927-8935. PubMed ID: 33410026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainability of a constructed wetland faced with a depredation event.
    Maine MA; Hadad HR; Sánchez GC; Mufarrege MM; Di Luca GA; Caffaratti SE; Pedro MC
    J Environ Manage; 2013 Oct; 128():1-6. PubMed ID: 23694854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of textile effluents with
    Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A
    Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland.
    Maine MA; Suñe N; Hadad H; Sánchez G; Bonetto C
    J Environ Manage; 2009 Jan; 90(1):355-63. PubMed ID: 18079048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance.
    Maine MA; Suñe N; Hadad H; Sánchez G; Bonetto C
    Chemosphere; 2007 Jun; 68(6):1105-13. PubMed ID: 17346771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of Industrial Sewage Sludge with Eichhornia crassipes, Salvinia molesta and Pistia stratiotes in Batch Fed Free Water Flow Constructed Wetlands.
    Kodituwakku KARK; Yatawara M
    Bull Environ Contam Toxicol; 2020 May; 104(5):627-633. PubMed ID: 32060589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland.
    Gomes MV; de Souza RR; Teles VS; Araújo Mendes É
    Chemosphere; 2014 May; 103():228-33. PubMed ID: 24369743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial variation of phosphate distribution in the sediment of a free water surface constructed wetland.
    Maine MA; Suñe N; Hadad H; Sánchez G
    Sci Total Environ; 2007 Jul; 380(1-3):75-83. PubMed ID: 17229453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.
    Yang X; Chen S; Zhang R
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):781-6. PubMed ID: 24146323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.
    Hadad HR; Maine MA; Bonetto CA
    Chemosphere; 2006 Jun; 63(10):1744-53. PubMed ID: 16289223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems.
    Ribeiro VHV; Alencar BTB; Dos Santos NMC; da Costa VAM; Dos Santos JB; Francino DMT; Souza MF; Silva DV
    Ecotoxicol Environ Saf; 2019 Jan; 168():177-183. PubMed ID: 30388534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cr(III) and Cr(VI) removal in floating treatment wetlands (FTWs) using
    Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Montañez F; Campagnoli MA
    Int J Phytoremediation; 2023; 25(13):1819-1829. PubMed ID: 37035876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water.
    Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M
    Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.