BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29698500)

  • 1. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery.
    Huang H; Lan Y; Deng J; Yang A; Deng X; Zhang L; Wen S
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29966392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Wen S; Zhang H; Zhang Y
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30275366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel semi-supervised framework for UAV based crop/weed classification.
    Khan S; Tufail M; Khan MT; Khan ZA; Iqbal J; Alam M
    PLoS One; 2021; 16(5):e0251008. PubMed ID: 33970938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
    Borra-Serrano I; Peña JM; Torres-Sánchez J; Mesas-Carrascosa FJ; López-Granados F
    Sensors (Basel); 2015 Aug; 15(8):19688-708. PubMed ID: 26274960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.
    Peña JM; Torres-Sánchez J; Serrano-Pérez A; de Castro AI; López-Granados F
    Sensors (Basel); 2015 Mar; 15(3):5609-26. PubMed ID: 25756867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.
    Peña JM; Torres-Sánchez J; de Castro AI; Kelly M; López-Granados F
    PLoS One; 2013; 8(10):e77151. PubMed ID: 24146963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
    Torres-Sánchez J; López-Granados F; De Castro AI; Peña-Barragán JM
    PLoS One; 2013; 8(3):e58210. PubMed ID: 23483997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements.
    Xu B; Meng R; Chen G; Liang L; Lv Z; Zhou L; Sun R; Zhao F; Yang W
    Pest Manag Sci; 2023 Jul; 79(7):2591-2602. PubMed ID: 36883563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery.
    Kattenborn T; Eichel J; Fassnacht FE
    Sci Rep; 2019 Nov; 9(1):17656. PubMed ID: 31776370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.
    Xia F; Quan L; Lou Z; Sun D; Li H; Lv X
    Front Plant Sci; 2022; 13():938604. PubMed ID: 35937335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).
    Zhang J; Basso B; Price RF; Putman G; Shuai G
    PLoS One; 2018; 13(4):e0195223. PubMed ID: 29677204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.
    Hong SJ; Han Y; Kim SY; Lee AY; Kim G
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV).
    Neupane B; Horanont T; Hung ND
    PLoS One; 2019; 14(10):e0223906. PubMed ID: 31622450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Season Cotton Yield Prediction with Scale-Aware Convolutional Neural Network Models and Unmanned Aerial Vehicle RGB Imagery.
    Niu H; Peddagudreddygari JR; Bhandari M; Landivar JA; Bednarz CW; Duffield N
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cost benefit analysis of survey methods for assessing intertidal sediment disturbance: A bait collection case study.
    White SM; Schaefer M; Barfield P; Cantrell R; Watson GJ
    J Environ Manage; 2022 Mar; 306():114386. PubMed ID: 35030426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.
    Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.