These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 29698533)
1. Classification-driven framework to predict maize hybrid field performance from metabolic profiles of young parental roots. de Abreu E Lima F; Willmitzer L; Nikoloski Z PLoS One; 2018; 13(4):e0196038. PubMed ID: 29698533 [TBL] [Abstract][Full Text] [Related]
2. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field. de Abreu E Lima F; Westhues M; Cuadros-Inostroza Á; Willmitzer L; Melchinger AE; Nikoloski Z Plant J; 2017 Apr; 90(2):319-329. PubMed ID: 28122143 [TBL] [Abstract][Full Text] [Related]
3. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach. Feher K; Lisec J; Römisch-Margl L; Selbig J; Gierl A; Piepho HP; Nikoloski Z; Willmitzer L PLoS One; 2014; 9(1):e85435. PubMed ID: 24409329 [TBL] [Abstract][Full Text] [Related]
5. Partial least squares regression, support vector machine regression, and transcriptome-based distances for prediction of maize hybrid performance with gene expression data. Fu J; Falke KC; Thiemann A; Schrag TA; Melchinger AE; Scholten S; Frisch M Theor Appl Genet; 2012 Mar; 124(5):825-33. PubMed ID: 22101908 [TBL] [Abstract][Full Text] [Related]
6. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Technow F; Schrag TA; Schipprack W; Bauer E; Simianer H; Melchinger AE Genetics; 2014 Aug; 197(4):1343-55. PubMed ID: 24850820 [TBL] [Abstract][Full Text] [Related]
7. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize ( Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L Genetics; 2017 Nov; 207(3):1167-1180. PubMed ID: 28971957 [TBL] [Abstract][Full Text] [Related]
8. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines. Hoecker N; Lamkemeyer T; Sarholz B; Paschold A; Fladerer C; Madlung J; Wurster K; Stahl M; Piepho HP; Nordheim A; Hochholdinger F Proteomics; 2008 Sep; 8(18):3882-94. PubMed ID: 18704907 [TBL] [Abstract][Full Text] [Related]
9. Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Schrag TA; Möhring J; Melchinger AE; Kusterer B; Dhillon BS; Piepho HP; Frisch M Theor Appl Genet; 2010 Jan; 120(2):451-61. PubMed ID: 19916002 [TBL] [Abstract][Full Text] [Related]
10. Linkage Analysis and Association Mapping QTL Detection Models for Hybrids Between Multiparental Populations from Two Heterotic Groups: Application to Biomass Production in Maize ( Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L G3 (Bethesda); 2017 Nov; 7(11):3649-3657. PubMed ID: 28963164 [TBL] [Abstract][Full Text] [Related]
11. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254 [TBL] [Abstract][Full Text] [Related]
12. Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Menkir A; Melake-Berhan A; The C; Ingelbrecht I; Adepoju A Theor Appl Genet; 2004 May; 108(8):1582-90. PubMed ID: 14985970 [TBL] [Abstract][Full Text] [Related]
13. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL. Schrag TA; Melchinger AE; Sørensen AP; Frisch M Theor Appl Genet; 2006 Oct; 113(6):1037-47. PubMed ID: 16896712 [TBL] [Abstract][Full Text] [Related]
14. Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Thiemann A; Fu J; Schrag TA; Melchinger AE; Frisch M; Scholten S Theor Appl Genet; 2010 Jan; 120(2):401-13. PubMed ID: 19888564 [TBL] [Abstract][Full Text] [Related]
15. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Obata T; Witt S; Lisec J; Palacios-Rojas N; Florez-Sarasa I; Yousfi S; Araus JL; Cairns JE; Fernie AR Plant Physiol; 2015 Dec; 169(4):2665-83. PubMed ID: 26424159 [TBL] [Abstract][Full Text] [Related]
16. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Reif JC; Hamrit S; Heckenberger M; Schipprack W; Maurer HP; Bohn M; Melchinger AE Theor Appl Genet; 2005 Sep; 111(5):838-45. PubMed ID: 16034585 [TBL] [Abstract][Full Text] [Related]
17. Robust non-syntenic gene expression patterns in diverse maize hybrids during root development. Baldauf JA; Vedder L; Schoof H; Hochholdinger F J Exp Bot; 2020 Jan; 71(3):865-876. PubMed ID: 31638701 [TBL] [Abstract][Full Text] [Related]
19. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield. Schrag TA; Maurer HP; Melchinger AE; Piepho HP; Peleman J; Frisch M Theor Appl Genet; 2007 May; 114(8):1345-55. PubMed ID: 17323040 [TBL] [Abstract][Full Text] [Related]
20. Maize metabolome and proteome responses to controlled cold stress partly mimic early-sowing effects in the field and differ from those of Arabidopsis. Urrutia M; Blein-Nicolas M; Prigent S; Bernillon S; Deborde C; Balliau T; Maucourt M; Jacob D; Ballias P; Bénard C; Sellier H; Gibon Y; Giauffret C; Zivy M; Moing A Plant Cell Environ; 2021 May; 44(5):1504-1521. PubMed ID: 33410508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]