BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29698646)

  • 1. A Proteomic Connectivity Map.
    Feller C; Aebersold R
    Cell Syst; 2018 Apr; 6(4):403-405. PubMed ID: 29698646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of mass spectrometry-based proteomics to understanding epigenetics.
    Noberini R; Sigismondo G; Bonaldi T
    Epigenomics; 2016 Mar; 8(3):429-45. PubMed ID: 26606673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry.
    Sidoli S; Cheng L; Jensen ON
    J Proteomics; 2012 Jun; 75(12):3419-33. PubMed ID: 22234360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical systems approaches for the analysis of histone modification readout.
    Soldi M; Bremang M; Bonaldi T
    Biochim Biophys Acta; 2014 Aug; 1839(8):657-68. PubMed ID: 24681439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of histone post-translational modifications during virus infection using mass spectrometry-based proteomics.
    Kulej K; Avgousti DC; Weitzman MD; Garcia BA
    Methods; 2015 Nov; 90():8-20. PubMed ID: 26093074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the Histone Code: A Physical Map of Chromatin States.
    Tchasovnikarova IA; Kingston RE
    Mol Cell; 2018 Jan; 69(1):5-7. PubMed ID: 29304334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of histones and their post-translational modifications by mass spectrometry.
    Garcia BA; Shabanowitz J; Hunt DF
    Curr Opin Chem Biol; 2007 Feb; 11(1):66-73. PubMed ID: 17157550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Library of Phosphoproteomic and Chromatin Signatures for Characterizing Cellular Responses to Drug Perturbations.
    Litichevskiy L; Peckner R; Abelin JG; Asiedu JK; Creech AL; Davis JF; Davison D; Dunning CM; Egertson JD; Egri S; Gould J; Ko T; Johnson SA; Lahr DL; Lam D; Liu Z; Lyons NJ; Lu X; MacLean BX; Mungenast AE; Officer A; Natoli TE; Papanastasiou M; Patel J; Sharma V; Toder C; Tubelli AA; Young JZ; Carr SA; Golub TR; Subramanian A; MacCoss MJ; Tsai LH; Jaffe JD
    Cell Syst; 2018 Apr; 6(4):424-443.e7. PubMed ID: 29655704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of a current role of mass spectrometry for proteome research.
    Chen CH
    Anal Chim Acta; 2008 Aug; 624(1):16-36. PubMed ID: 18706308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the biology of chromatin in health and cancer using proteomic approaches.
    Eubanks CG; Dayebgadoh G; Liu X; Washburn MP
    Expert Rev Proteomics; 2017 Oct; 14(10):905-915. PubMed ID: 28895440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors.
    Florens L; Carozza MJ; Swanson SK; Fournier M; Coleman MK; Workman JL; Washburn MP
    Methods; 2006 Dec; 40(4):303-11. PubMed ID: 17101441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application and development of spectral network cluster method in post-translational modifications of identification peptides].
    He M; Shu K; Bai M; Xu R
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1567-1578. PubMed ID: 30394024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of global histone post-translational modifications during mammalian hibernation.
    Tessier SN; Luu BE; Smith JC; Storey KB
    Cryobiology; 2017 Apr; 75():28-36. PubMed ID: 28257856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations.
    Önder Ö; Sidoli S; Carroll M; Garcia BA
    Expert Rev Proteomics; 2015; 12(5):499-517. PubMed ID: 26400466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds.
    Dele-Oni DO; Christianson KE; Egri SB; Vaca Jacome AS; DeRuff KC; Mullahoo J; Sharma V; Davison D; Ko T; Bula M; Blanchard J; Young JZ; Litichevskiy L; Lu X; Lam D; Asiedu JK; Toder C; Officer A; Peckner R; MacCoss MJ; Tsai LH; Carr SA; Papanastasiou M; Jaffe JD
    Sci Data; 2021 Aug; 8(1):226. PubMed ID: 34433823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.
    Valero ML; Sendra R; Pamblanco M
    J Proteomics; 2016 Mar; 136():183-92. PubMed ID: 26778144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of mass spectrometry to the identification and quantification of histone post-translational modifications.
    Freitas MA; Sklenar AR; Parthun MR
    J Cell Biochem; 2004 Jul; 92(4):691-700. PubMed ID: 15211567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites.
    Coetzee N; Sidoli S; van Biljon R; Painter H; Llinás M; Garcia BA; Birkholtz LM
    Sci Rep; 2017 Apr; 7(1):607. PubMed ID: 28377601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.
    Kessler BM
    Epigenomics; 2010 Feb; 2(1):163-7. PubMed ID: 22122752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry.
    Jensen ON
    Curr Opin Chem Biol; 2004 Feb; 8(1):33-41. PubMed ID: 15036154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.