BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29698749)

  • 1. The Role of Ca
    Imber AN; Patrone LGA; Li KY; Gargaglioni LH; Putnam RW
    Neuroscience; 2018 Jun; 381():59-78. PubMed ID: 29698749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient outwardly rectifying A currents are involved in the firing rate response to altered CO2 in chemosensitive locus coeruleus neurons from neonatal rats.
    Li KY; Putnam RW
    Am J Physiol Regul Integr Comp Physiol; 2013 Oct; 305(7):R780-92. PubMed ID: 23948777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development and activation of L-type Ca2+ currents in locus ceruleus neurons: implications for a role for Ca2+ in central chemosensitivity.
    Imber AN; Putnam RW
    J Appl Physiol (1985); 2012 May; 112(10):1715-26. PubMed ID: 22403350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats.
    Stunden CE; Filosa JA; Garcia AJ; Dean JB; Putnam RW
    Respir Physiol; 2001 Sep; 127(2-3):135-55. PubMed ID: 11504586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A HCO(3)(-)-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca²⁺ currents in locus coeruleus neurons.
    Imber AN; Santin JM; Graham CD; Putnam RW
    Biochim Biophys Acta; 2014 Dec; 1842(12 Pt B):2569-78. PubMed ID: 25092170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels.
    Filosa JA; Putnam RW
    Am J Physiol Cell Physiol; 2003 Jan; 284(1):C145-55. PubMed ID: 12388081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats.
    Lopes LT; Patrone LG; Li KY; Imber AN; Graham CD; Gargaglioni LH; Putnam RW
    Neuroscience; 2016 Jun; 324():446-68. PubMed ID: 27001176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of TRP channels in the CO₂ chemosensitivity of locus coeruleus neurons.
    Cui N; Zhang X; Tadepalli JS; Yu L; Gai H; Petit J; Pamulapati RT; Jin X; Jiang C
    J Neurophysiol; 2011 Jun; 105(6):2791-801. PubMed ID: 21430274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of locus coeruleus in breathing control in female rats.
    de Carvalho D; Patrone LGA; Marques DA; Vicente MC; Szawka RE; Anselmo-Franci JA; Bícego KC; Gargaglioni LH
    Respir Physiol Neurobiol; 2017 Nov; 245():29-36. PubMed ID: 28687484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatic vs. dendritic responses to hypercapnia in chemosensitive locus coeruleus neurons from neonatal rats.
    Ritucci NA; Dean JB; Putnam RW
    Am J Physiol Cell Physiol; 2005 Nov; 289(5):C1094-104. PubMed ID: 16014703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The locus coeruleus and central chemosensitivity.
    Gargaglioni LH; Hartzler LK; Putnam RW
    Respir Physiol Neurobiol; 2010 Oct; 173(3):264-73. PubMed ID: 20435170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus.
    Santin JM; Hartzler LK
    Respir Physiol Neurobiol; 2013 Feb; 185(3):553-61. PubMed ID: 23146875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orexinergic system in the locus coeruleus modulates the CO2 ventilatory response.
    Vicente MC; Dias MB; Fonseca EM; Bícego KC; Gargaglioni LH
    Pflugers Arch; 2016 May; 468(5):763-74. PubMed ID: 26832348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of BK(Ca) channels of neurons in rostral ventrolateral medulla to CO-mediated central regulation of respiratory rhythm in medullary slices of neonatal rats.
    Chen L; Zhang J; He Y; Pan J; Zhou H; Li H; Tang Y; Zheng Y
    Respir Physiol Neurobiol; 2012 Jul; 182(2-3):93-9. PubMed ID: 22633934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones.
    Filosa JA; Dean JB; Putnam RW
    J Physiol; 2002 Jun; 541(Pt 2):493-509. PubMed ID: 12042354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.
    Santin JM; Watters KC; Putnam RW; Hartzler LK
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(12):R1451-64. PubMed ID: 24108868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemosensitive response of neurons from the locus coeruleus (LC) to hypercapnic acidosis with clamped intracellular pH.
    Hartzler LK; Dean JB; Putnam RW
    Adv Exp Med Biol; 2008; 605():333-7. PubMed ID: 18085295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats.
    de Carvalho D; Marques DA; Bernuci MP; Leite CM; Araújo-Lopes R; Anselmo-Franci J; Bícego KC; Szawka RE; Gargaglioni LH
    Neuroscience; 2016 Jan; 313():36-45. PubMed ID: 26601772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low pH
    Guarina L; Vandael DH; Carabelli V; Carbone E
    J Physiol; 2017 Apr; 595(8):2587-2609. PubMed ID: 28026020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased excitability of locus coeruleus neurons during hypercapnia is exaggerated in the streptozotocin-model of Alzheimer's disease.
    Vicente MC; Humphrey CM; Gargaglioni LH; Ostrowski TD
    Exp Neurol; 2020 Jun; 328():113250. PubMed ID: 32088169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.