BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29698777)

  • 1. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Oh J; Moo-Young M; Chou CP
    Metab Eng; 2018 May; 47():401-413. PubMed ID: 29698777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Jan; 115(1):216-231. PubMed ID: 28941282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 May; 115(5):1239-1252. PubMed ID: 29384194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of hyaluronic acid molecular weight and titer by temperature in engineered
    Li Y; Li G; Zhao X; Shao Y; Wu M; Ma T
    3 Biotech; 2019 Jun; 9(6):225. PubMed ID: 31139540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto-
    Dong X; Li N; Liu Z; Lv X; Shen Y; Li J; Du G; Wang M; Liu L
    J Agric Food Chem; 2020 Feb; 68(8):2477-2484. PubMed ID: 32013418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Bacillus subtilis for l-valine overproduction.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Nov; 115(11):2778-2792. PubMed ID: 29981237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system.
    Zhao X; Chen X; Xue Y; Wang X
    J Basic Microbiol; 2022 Jul; 62(7):824-832. PubMed ID: 35655368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher titer hyaluronic acid production in recombinant Lactococcus lactis.
    Sunguroğlu C; Sezgin DE; Aytar Çelik P; Çabuk A
    Prep Biochem Biotechnol; 2018; 48(8):734-742. PubMed ID: 30265187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Lv X; Li J; Du G; Ledesma-Amaro R; Liu L
    Metab Eng; 2018 Sep; 49():232-241. PubMed ID: 30176395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective bacterial and fungal sources of hyaluronic acid: A review.
    Shikina EV; Kovalevsky RA; Shirkovskaya AI; Toukach PV
    Comput Struct Biotechnol J; 2022; 20():6214-6236. PubMed ID: 36420162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of manipulating glucuronic acid biosynthetic pathway in Bacillus subtilis strain on hyaluronic acid production.
    Afrasiabi S; Zanjani FSA; Ahmadian G; Cohan RA; Keramati M
    AMB Express; 2023 Jun; 13(1):63. PubMed ID: 37354246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid.
    Cheng F; Yu H; Stephanopoulos G
    Metab Eng; 2019 Sep; 55():276-289. PubMed ID: 31301358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168.
    Jin P; Kang Z; Yuan P; Du G; Chen J
    Metab Eng; 2016 May; 35():21-30. PubMed ID: 26851304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights.
    Jia Y; Zhu J; Chen X; Tang D; Su D; Yao W; Gao X
    Bioresour Technol; 2013 Mar; 132():427-31. PubMed ID: 23433979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine.
    Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L
    ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin.
    Chien LJ; Lee CK
    Biotechnol Prog; 2007; 23(5):1017-22. PubMed ID: 17691809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.
    Hmar RV; Prasad SB; Jayaraman G; Ramachandran KB
    Biotechnol J; 2014 Dec; 9(12):1554-64. PubMed ID: 25044639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.