BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29698877)

  • 1. Higher torque and muscle fibre conduction velocity of the Biceps Brachii in karate practitioners during isokinetic contractions.
    Quinzi F; Bianchetti A; Felici F; Sbriccoli P
    J Electromyogr Kinesiol; 2018 Jun; 40():81-87. PubMed ID: 29698877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular control adaptations in elite athletes: the case of top level karateka.
    Sbriccoli P; Camomilla V; Di Mario A; Quinzi F; Figura F; Felici F
    Eur J Appl Physiol; 2010 Apr; 108(6):1269-80. PubMed ID: 20039054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise.
    Bazzucchi I; Sbriccoli P; Marzattinocci G; Felici F
    Muscle Nerve; 2006 Feb; 33(2):191-9. PubMed ID: 16307438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tennis players show a lower coactivation of the elbow antagonist muscles during isokinetic exercises.
    Bazzucchi I; Riccio ME; Felici F
    J Electromyogr Kinesiol; 2008 Oct; 18(5):752-9. PubMed ID: 17449279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity-specific training in elbow flexors.
    Pousson M; Amiridis IG; Cometti G; Van Hoecke J
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):367-72. PubMed ID: 10483808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of exercise training on neuromuscular function of elbow flexors and knee extensors of type 2 diabetic patients.
    Bazzucchi I; De Vito G; Felici F; Dewhurst S; Sgadari A; Sacchetti M
    J Electromyogr Kinesiol; 2015 Oct; 25(5):815-23. PubMed ID: 26194594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromechanical delay in ballistic movement of superior limb: comparison between karate athletes and nonathletes.
    Rodrigues Ferreira MA; Vences Brito A
    Percept Mot Skills; 2010 Dec; 111(3):722-34. PubMed ID: 21319612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ballistic movement performance in karate athletes.
    Zehr EP; Sale DG; Dowling JJ
    Med Sci Sports Exerc; 1997 Oct; 29(10):1366-73. PubMed ID: 9346169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental muscle pain changes motor control strategies in dynamic contractions.
    Ervilha UF; Farina D; Arendt-Nielsen L; Graven-Nielsen T
    Exp Brain Res; 2005 Jul; 164(2):215-24. PubMed ID: 15952017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular dysfunction in diabetes: role of nerve impairment and training status.
    Sacchetti M; Balducci S; Bazzucchi I; Carlucci F; Scotto di Palumbo A; Haxhi J; Conti F; Di Biase N; Calandriello E; Pugliese G
    Med Sci Sports Exerc; 2013 Jan; 45(1):52-9. PubMed ID: 22843109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of lower-body flexibility, strength, and knee stability between karate athletes and active controls.
    Probst MM; Fletcher R; Seelig DS
    J Strength Cond Res; 2007 May; 21(2):451-5. PubMed ID: 17530951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated Kicking Actions in Karate: Effect on Technical Execution in Elite Practitioners.
    Quinzi F; Camomilla V; Di Mario A; Felici F; Sbriccoli P
    Int J Sports Physiol Perform; 2016 Apr; 11(3):363-9. PubMed ID: 26308257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similar response of agonist and antagonist muscles after eccentric exercise revealed by electromyography and mechanomyography.
    Jaskólski A; Andrzejewska R; Marusiak J; Kisiel-Sajewicz K; Jaskólska A
    J Electromyogr Kinesiol; 2007 Oct; 17(5):568-77. PubMed ID: 16890456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptations during familiarization to resistive exercise.
    Calder KM; Gabriel DA
    J Electromyogr Kinesiol; 2007 Jun; 17(3):328-35. PubMed ID: 16740395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An examination of motor unit firing rates during steady torque of maximal efforts with either an explosive or slower rate of torque development.
    Reece TM; Arnold CE; Herda TJ
    Exp Physiol; 2021 Dec; 106(12):2517-2530. PubMed ID: 34676609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of estimates of muscle fiber conduction velocity and surface EMG amplitude across subjects and processing intervals.
    Del Vecchio A; Bazzucchi I; Felici F
    J Electromyogr Kinesiol; 2018 Jun; 40():102-109. PubMed ID: 29705496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of muscle length on distribution of muscle fiber conduction velocity for M. biceps brachii.
    Sakamoto K; Li W
    Appl Human Sci; 1997 Jan; 16(1):1-7. PubMed ID: 9088091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The orderly recruitment of motor units may be modified when a muscle is acting as an antagonist.
    Magnuson JR; Dalton BH; McNeil CJ
    J Appl Physiol (1985); 2023 Sep; 135(3):519-526. PubMed ID: 37439237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo.
    Zimmer M; Kleiser B; Marquetand J; Ateş F
    J Mech Behav Biomed Mater; 2023 Jan; 137():105543. PubMed ID: 36371993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of isokinetic contraction velocity on concentric and eccentric strength of the biceps brachii.
    Drury DG; Stuempfle KJ; Mason CW; Girman JC
    J Strength Cond Res; 2006 May; 20(2):390-5. PubMed ID: 16686569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.