These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 29699656)
1. Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Taşeri L; Aktaş M; Şevik S; Gülcü M; Uysal Seçkin G; Aktekeli B Food Chem; 2018 Sep; 260():152-159. PubMed ID: 29699656 [TBL] [Abstract][Full Text] [Related]
2. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). Tseng A; Zhao Y J Food Sci; 2012 Sep; 77(9):H192-201. PubMed ID: 22908851 [TBL] [Abstract][Full Text] [Related]
3. Effect of Drying on the Phenolic Content and Antioxidant Activity of Red Grape Pomace. Carmona-Jiménez Y; García-Moreno MV; García-Barroso C Plant Foods Hum Nutr; 2018 Mar; 73(1):74-81. PubMed ID: 29442263 [TBL] [Abstract][Full Text] [Related]
4. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying. Yan H; Kerr WL J Sci Food Agric; 2013 Apr; 93(6):1499-504. PubMed ID: 23080413 [TBL] [Abstract][Full Text] [Related]
6. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Chong CH; Law CL; Figiel A; Wojdyło A; Oziembłowski M Food Chem; 2013 Dec; 141(4):3889-96. PubMed ID: 23993562 [TBL] [Abstract][Full Text] [Related]
7. Phytochemicals, Monosaccharides and Elemental Composition of the Non-Pomace Constituent of Organic and Conventional Grape Juices (Vitis labrusca L.): Effect of Drying on the Bioactive Content. Haas IC; Toaldo IM; de Gois JS; Borges DL; Petkowicz CL; Bordignon-Luiz MT Plant Foods Hum Nutr; 2016 Dec; 71(4):422-428. PubMed ID: 27738868 [TBL] [Abstract][Full Text] [Related]
8. Effects of process parameters on quality changes of shrimp during drying in a jet-spouted bed dryer. Niamnuy C; Devahastin S; Soponronnarit S J Food Sci; 2007 Nov; 72(9):E553-63. PubMed ID: 18034725 [TBL] [Abstract][Full Text] [Related]
9. Confidence intervals for modeling anthocyanin retention in grape pomace during nonisothermal heating. Mishra DK; Dolan KD; Yang L J Food Sci; 2008 Jan; 73(1):E9-15. PubMed ID: 18211351 [TBL] [Abstract][Full Text] [Related]
10. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing. Khanal RC; Howard LR; Prior RL J Food Sci; 2009 Aug; 74(6):H174-82. PubMed ID: 19723202 [TBL] [Abstract][Full Text] [Related]
11. Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation. Tao Y; Li D; Siong Chai W; Show PL; Yang X; Manickam S; Xie G; Han Y Ultrason Sonochem; 2021 Apr; 72():105410. PubMed ID: 33341708 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the dried properties of Ganoderma lucidum produced by the convective dryer and infrared dryer. Naseri M; Movagharnejad K; Nanvakenari S Sci Rep; 2023 Aug; 13(1):12636. PubMed ID: 37537244 [TBL] [Abstract][Full Text] [Related]
13. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products. Lim K; Ma M; Dolan KD J Food Sci; 2011 Sep; 76(7):H156-64. PubMed ID: 21806608 [TBL] [Abstract][Full Text] [Related]
14. Effect of freeze-drying and air-drying on the content of carotenoids and anthocyanins in stored purple carrot. Macura R; Michalczyk M; Fiutak G; Maciejaszek I Acta Sci Pol Technol Aliment; 2019; 18(2):135-142. PubMed ID: 31256541 [TBL] [Abstract][Full Text] [Related]
15. A diffusion model for drying of a heat sensitive solid under multiple heat input modes. Sun L; Islam MR; Ho JC; Mujumdar AS Bioresour Technol; 2005 Sep; 96(14):1551-60. PubMed ID: 15978987 [TBL] [Abstract][Full Text] [Related]
16. Apparatus and method for investigation of energy consumption of microwave assisted drying systems. Göllei A; Vass A; Magyar A; Pallai E Rev Sci Instrum; 2009 Oct; 80(10):104706. PubMed ID: 19895084 [TBL] [Abstract][Full Text] [Related]
17. The influence of berry perforation on grape drying kinetics and total phenolic compounds. Martín-Gómez J; Ángeles Varo M; Mérida J; Serratosa MP J Sci Food Agric; 2019 Jul; 99(9):4260-4266. PubMed ID: 30801722 [TBL] [Abstract][Full Text] [Related]
18. Economic analysis and drying kinetics of a geothermal-assisted solar dryer for tomato paste drying. Hadibi T; Boubekri A; Mennouche D; Benhamza A; Kumar A J Sci Food Agric; 2021 Dec; 101(15):6542-6551. PubMed ID: 34018185 [TBL] [Abstract][Full Text] [Related]
19. Drying of Pedro Ximenez grapes in chamber at controlled temperature and with dipping pretreatments. Changes in the color fraction. Serratosa MP; Lopez-Toledano A; Medina M; Merida J J Agric Food Chem; 2008 Nov; 56(22):10739-46. PubMed ID: 18942835 [TBL] [Abstract][Full Text] [Related]
20. Effect of air velocity on kinetics of thin layer carrot pomace drying. Kumar N; Sarkar BC; Sharma HK Food Sci Technol Int; 2011 Oct; 17(5):459-69. PubMed ID: 21954311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]