BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29699666)

  • 1. Molecular insight into the inclusion of the dietary plant flavonol fisetin and its chromophore within a chemically modified γ-cyclodextrin: Multi-spectroscopic, molecular docking and solubility studies.
    Pahari B; Chakraborty S; Sengupta PK
    Food Chem; 2018 Sep; 260():221-230. PubMed ID: 29699666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting binding of fisetin and daidzein in γ-cyclodextrin nanocavity.
    Pahari B; Sengupta B; Chakraborty S; Thomas B; McGowan D; Sengupta PK
    J Photochem Photobiol B; 2013 Jan; 118():33-41. PubMed ID: 23177044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of beta-cyclodextrin nanocavity confinement on the photophysics of robinetin.
    Banerjee A; Basu K; Sengupta PK
    J Photochem Photobiol B; 2007 Dec; 89(2-3):88-97. PubMed ID: 17951065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment: spectroscopic and molecular modeling studies.
    Pahari BP; Chaudhuri S; Chakraborty S; Sengupta PK
    J Phys Chem B; 2015 Feb; 119(6):2533-45. PubMed ID: 25313717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of β-cyclodextrin on the molecular properties of myricetin upon nano-encapsulation: insight from optical spectroscopy and quantum chemical studies.
    Chakraborty S; Basu S; Basak S
    Carbohydr Polym; 2014 Jan; 99():116-25. PubMed ID: 24274487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the interactions of hemoglobin with antioxidant flavonoids via fluorescence spectroscopy and molecular modeling studies.
    Chaudhuri S; Chakraborty S; Sengupta PK
    Biophys Chem; 2011 Feb; 154(1):26-34. PubMed ID: 21232842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation of amphotericin B in the presence of gamma-cyclodextrin.
    Kajtár M; Vikmon M; Morlin E; Szejtli J
    Biopolymers; 1989 Sep; 28(9):1585-96. PubMed ID: 2775849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the non-covalent binding behaviours of 7-hydroxyflavone and 3-hydroxyflavone with hen egg white lysozyme: Multi-spectroscopic and molecular docking perspectives.
    Das S; Rohman MA; Singha Roy A
    J Photochem Photobiol B; 2018 Mar; 180():25-38. PubMed ID: 29413699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel water-soluble fisetin/cyclodextrins inclusion complexes: Preparation, characterization, molecular docking and bioavailability.
    Zhang JQ; Jiang KM; An K; Ren SH; Xie XG; Jin Y; Lin J
    Carbohydr Res; 2015 Dec; 418():20-28. PubMed ID: 26531135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different substituents on the water-solubility and stability properties of 1 : 2 [60]fullerene derivative·gamma-cyclodextrin complexes.
    Ikeda A; Hirata A; Ishikawa M; Kikuchi J; Mieda S; Shinoda W
    Org Biomol Chem; 2013 Dec; 11(45):7843-51. PubMed ID: 24061283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking of enantioselective solubility of rac-norgestrel in the presence of cyclodextrin by a CD spectroscopic method.
    Szegvári D; Zelkó R; Horváth P; Gergely A
    Chirality; 2006 Feb; 18(2):121-6. PubMed ID: 16385617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectroscopic study of the inclusion of azulene by beta- and gamma-cyclodextrins.
    Abou-Zied OK
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):245-51. PubMed ID: 16257721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic investigation on the inclusion complex formation between amisulpride and γ-cyclodextrin.
    Negi JS; Singh S
    Carbohydr Polym; 2013 Feb; 92(2):1835-43. PubMed ID: 23399226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorimetric study on molecular recognition of beta-cyclodextrin with 2-amino-9-fluorenone.
    Enoch IV; Swaminathan M
    J Fluoresc; 2006 Jul; 16(4):501-10. PubMed ID: 16794872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition of a model globular protein apomyoglobin by synthetic receptor cyclodextrin: effect of fluorescence modification of the protein and cavity size of the receptor in the interaction.
    Saha R; Rakshit S; Pal SK
    J Mol Recognit; 2013 Nov; 26(11):568-77. PubMed ID: 24089364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies.
    Zeng HJ; Yang R; Liang H; Qu LB
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():576-90. PubMed ID: 26162346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the complexation of fisetin with cyclodextrins.
    Guzzo MR; Uemi M; Donate PM; Nikolaou S; Machado AE; Okano LT
    J Phys Chem A; 2006 Sep; 110(36):10545-51. PubMed ID: 16956235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the complexation of gemfibrozil with gamma- and hydroxypropyl-gamma-cyclodextrins.
    Fernández L; Martínez-Ohárriz MC; Martín C; Vélaz I; Sánchez M; Zornoza A
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):943-8. PubMed ID: 18423939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homodimerization and heteroassociation of 6-O-(2-sulfonato-6-naphthyl)-gamma-cyclodextrin and 6-deoxy-(pyrene-1-carboxamido)-beta-cyclodextrin.
    Park JW; Song HE; Lee SY
    J Org Chem; 2003 Sep; 68(18):7071-6. PubMed ID: 12946151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of cyclodextrins as an important factor to determine their complexation behavior.
    Bikádi Z; Kurdi R; Balogh S; Szemán J; Hazai E
    Chem Biodivers; 2006 Nov; 3(11):1266-78. PubMed ID: 17193241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.