BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29699942)

  • 21. The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli. A new model for the protein structure.
    Eschenbrenner M; Covès J; Fontecave M
    J Biol Chem; 1995 Sep; 270(35):20550-5. PubMed ID: 7657631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism.
    Boll M; Fuchs G
    Eur J Biochem; 1998 Feb; 251(3):946-54. PubMed ID: 9490071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an
    Vázquez L; Flórez AB; Redruello B; Mayo B
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32586036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of a novel equol-producing bacterium from human feces.
    Yokoyama S; Suzuki T
    Biosci Biotechnol Biochem; 2008 Oct; 72(10):2660-6. PubMed ID: 18838805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol from daidzein in Lactococcus sp. strain 20-92.
    Shimada Y; Takahashi M; Miyazawa N; Abiru Y; Uchiyama S; Hishigaki H
    Appl Environ Microbiol; 2012 Jul; 78(14):4902-7. PubMed ID: 22582059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli.
    Coves J; Zeghouf M; Macherel D; Guigliarelli B; Asso M; Fontecave M
    Biochemistry; 1997 May; 36(19):5921-8. PubMed ID: 9153434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of dihydroorotate dehydrogenase B: electron transfer between two flavin groups bridged by an iron-sulphur cluster.
    Rowland P; Nørager S; Jensen KF; Larsen S
    Structure; 2000 Dec; 8(12):1227-38. PubMed ID: 11188687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Titer of (
    Deng H; Gao S; Zhang W; Zhang T; Li N; Zhou J
    ACS Synth Biol; 2022 Dec; 11(12):4043-4053. PubMed ID: 36282480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The crystal structure and reaction mechanism of Escherichia coli 2,4-dienoyl-CoA reductase.
    Hubbard PA; Liang X; Schulz H; Kim JJ
    J Biol Chem; 2003 Sep; 278(39):37553-60. PubMed ID: 12840019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters.
    Staples CR; Ameyibor E; Fu W; Gardet-Salvi L; Stritt-Etter AL; Schürmann P; Knaff DB; Johnson MK
    Biochemistry; 1996 Sep; 35(35):11425-34. PubMed ID: 8784198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine.
    Yokoyama S; Oshima K; Nomura I; Hattori M; Suzuki T
    J Bacteriol; 2011 Oct; 193(19):5570-1. PubMed ID: 21914883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis.
    Shen AL; Porter TD; Wilson TE; Kasper CB
    J Biol Chem; 1989 May; 264(13):7584-9. PubMed ID: 2708380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats.
    Matthies A; Loh G; Blaut M; Braune A
    J Nutr; 2012 Jan; 142(1):40-6. PubMed ID: 22113864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in
    Flórez AB; Vázquez L; Rodríguez J; Redruello B; Mayo B
    Nutrients; 2019 Apr; 11(5):. PubMed ID: 31052328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine.
    Minamida K; Tanaka M; Abe A; Sone T; Tomita F; Hara H; Asano K
    J Biosci Bioeng; 2006 Sep; 102(3):247-50. PubMed ID: 17046543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of completely flavinylated histamine dehydrogenase, unique covalently bound flavin, and iron-sulfur cluster-containing enzyme of nocardioides simplex in Escherichia coli, and its properties.
    Fujieda N; Tsuse N; Satoh A; Ikeda T; Kano K
    Biosci Biotechnol Biochem; 2005 Dec; 69(12):2459-62. PubMed ID: 16377910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.
    Wang XL; Hur HG; Lee JH; Kim KT; Kim SI
    Appl Environ Microbiol; 2005 Jan; 71(1):214-9. PubMed ID: 15640190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and Identification of a New Daidzein Reductase Involved in (
    Hu Y; Yang C; Song C; Zhong W; Li B; Cao L; Chen H; Zhao C; Yin Y
    Front Microbiol; 2022; 13():901745. PubMed ID: 35668767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NADPH-sulfite reductase from Escherichia coli. A flavin reductase participating in the generation of the free radical of ribonucleotide reductase.
    Covès J; Nivière V; Eschenbrenner M; Fontecave M
    J Biol Chem; 1993 Sep; 268(25):18604-9. PubMed ID: 8360156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.