BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29700119)

  • 1. Assembly of human C-terminal binding protein (CtBP) into tetramers.
    Bellesis AG; Jecrois AM; Hayes JA; Schiffer CA; Royer WE
    J Biol Chem; 2018 Jun; 293(23):9101-9112. PubMed ID: 29700119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAD(H) phosphates mediate tetramer assembly of human C-terminal binding protein (CtBP).
    Nichols JC; Schiffer CA; Royer WE
    J Biol Chem; 2021; 296():100351. PubMed ID: 33524397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH/NAD
    Erlandsen H; Jecrois AM; Nichols JC; Cole JL; Royer WE
    FEBS Lett; 2022 Feb; 596(4):479-490. PubMed ID: 34997967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM structure of CtBP2 confirms tetrameric architecture.
    Jecrois AM; Dcona MM; Deng X; Bandyopadhyay D; Grossman SR; Schiffer CA; Royer WE
    Structure; 2021 Apr; 29(4):310-319.e5. PubMed ID: 33264605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan.
    Madison DL; Wirz JA; Siess D; Lundblad JR
    J Biol Chem; 2013 Sep; 288(39):27836-48. PubMed ID: 23940047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2.
    Zhao LJ; Kuppuswamy M; Vijayalingam S; Chinnadurai G
    BMC Mol Biol; 2009 Sep; 10():89. PubMed ID: 19754958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of CtBP family protein isoforms in breast cancer and their role in chemoresistance.
    Birts CN; Harding R; Soosaipillai G; Halder T; Azim-Araghi A; Darley M; Cutress RI; Bateman AC; Blaydes JP
    Biol Cell; 2010 Jan; 103(1):1-19. PubMed ID: 20964627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design.
    Hilbert BJ; Grossman SR; Schiffer CA; Royer WE
    FEBS Lett; 2014 May; 588(9):1743-8. PubMed ID: 24657618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation by C-terminal binding proteins.
    Chinnadurai G
    Int J Biochem Cell Biol; 2007; 39(9):1593-607. PubMed ID: 17336131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms directing the nuclear localization of the CtBP family proteins.
    Verger A; Quinlan KG; Crofts LA; Spanò S; Corda D; Kable EP; Braet F; Crossley M
    Mol Cell Biol; 2006 Jul; 26(13):4882-94. PubMed ID: 16782877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CtBP2 co-repressor is regulated by NADH-dependent dimerization and possesses a novel N-terminal repression domain.
    Thio SS; Bonventre JV; Hsu SI
    Nucleic Acids Res; 2004; 32(5):1836-47. PubMed ID: 15037661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEF1.
    Furusawa T; Moribe H; Kondoh H; Higashi Y
    Mol Cell Biol; 1999 Dec; 19(12):8581-90. PubMed ID: 10567582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminal binding proteins: central players in development and disease.
    Stankiewicz TR; Gray JJ; Winter AN; Linseman DA
    Biomol Concepts; 2014 Dec; 5(6):489-511. PubMed ID: 25429601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided design of a high affinity inhibitor to human CtBP.
    Hilbert BJ; Morris BL; Ellis KC; Paulsen JL; Schiffer CA; Grossman SR; Royer WE
    ACS Chem Biol; 2015 Apr; 10(4):1118-27. PubMed ID: 25636004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active-Site Tryptophan, the Target of Antineoplastic C-Terminal Binding Protein Inhibitors, Mediates Inhibitor Disruption of CtBP Oligomerization and Transcription Coregulatory Activities.
    Dcona MM; Damle PK; Zarate-Perez F; Morris BL; Nawaz Z; Dennis MJ; Deng X; Korwar S; Singh SJ; Ellis KC; Royer WE; Bandyopadhyay D; Escalante C; Grossman SR
    Mol Pharmacol; 2019 Jul; 96(1):99-108. PubMed ID: 31036695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2.
    Zhao LJ; Subramanian T; Zhou Y; Chinnadurai G
    J Biol Chem; 2006 Feb; 281(7):4183-9. PubMed ID: 16356938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia.
    Sumner ET; Chawla AT; Cororaton AD; Koblinski JE; Kovi RC; Love IM; Szomju BB; Korwar S; Ellis KC; Grossman SR
    Oncogene; 2017 Aug; 36(33):4810-4816. PubMed ID: 28414304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the unique N-terminal domain of CtBP2 in determining the subcellular localisation of CtBP family proteins.
    Bergman LM; Morris L; Darley M; Mirnezami AH; Gunatilake SC; Blaydes JP
    BMC Cell Biol; 2006 Sep; 7():35. PubMed ID: 16999872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase.
    Kumar V; Carlson JE; Ohgi KA; Edwards TA; Rose DW; Escalante CR; Rosenfeld MG; Aggarwal AK
    Mol Cell; 2002 Oct; 10(4):857-69. PubMed ID: 12419229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intracellular NADH level regulates atrophic nonunion pathogenesis through the CtBP2-p300-Runx2 transcriptional complex.
    Zhang W; Duan N; Zhang Q; Song T; Li Z; Chen X; Wang K
    Int J Biol Sci; 2018; 14(14):2023-2036. PubMed ID: 30585266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.