BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 29700387)

  • 1. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells.
    Truffi M; Colombo M; Sorrentino L; Pandolfi L; Mazzucchelli S; Pappalardo F; Pacini C; Allevi R; Bonizzi A; Corsi F; Prosperi D
    Sci Rep; 2018 Apr; 8(1):6563. PubMed ID: 29700387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance.
    Upton R; Banuelos A; Feng D; Biswas T; Kao K; McKenna K; Willingham S; Ho PY; Rosental B; Tal MC; Raveh T; Volkmer JP; Pegram MD; Weissman IL
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34257155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer.
    Watanabe S; Yonesaka K; Tanizaki J; Nonagase Y; Takegawa N; Haratani K; Kawakami H; Hayashi H; Takeda M; Tsurutani J; Nakagawa K
    Cancer Med; 2019 Mar; 8(3):1258-1268. PubMed ID: 30701699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer.
    Mercogliano MF; De Martino M; Venturutti L; Rivas MA; Proietti CJ; Inurrigarro G; Frahm I; Allemand DH; Deza EG; Ares S; Gercovich FG; Guzmán P; Roa JC; Elizalde PV; Schillaci R
    Clin Cancer Res; 2017 Feb; 23(3):636-648. PubMed ID: 27698002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer.
    Nunes T; Pons T; Hou X; Van Do K; Caron B; Rigal M; Di Benedetto M; Palpant B; Leboeuf C; Janin A; Bousquet G
    J Exp Clin Cancer Res; 2019 Jul; 38(1):306. PubMed ID: 31299997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Radiation Treatment of HER2-Positive Breast Cancer Using Trastuzumab-Modified Gold Nanoparticles Labeled with
    Cai Z; Yook S; Lu Y; Bergstrom D; Winnik MA; Pignol JP; Reilly RM
    Pharm Res; 2017 Mar; 34(3):579-590. PubMed ID: 27987070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD147 knockdown improves the antitumor efficacy of trastuzumab in HER2-positive breast cancer cells.
    Xiong L; Ding L; Ning H; Wu C; Fu K; Wang Y; Zhang Y; Liu Y; Zhou L
    Oncotarget; 2016 Sep; 7(36):57737-57751. PubMed ID: 27363028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer.
    Merry CR; McMahon S; Forrest ME; Bartels CF; Saiakhova A; Bartel CA; Scacheri PC; Thompson CL; Jackson MW; Harris LN; Khalil AM
    Oncotarget; 2016 Aug; 7(33):53230-53244. PubMed ID: 27449296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GDNF induces RET-SRC-HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells.
    Gardaneh M; Shojaei S; Kaviani A; Behnam B
    Breast Cancer Res Treat; 2017 Apr; 162(2):231-241. PubMed ID: 28116540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the CK-MB-1 trastuzumab-resistant HER2-positive breast cancer cell line and xenograft animal models.
    Chung WP; Huang WL; Liao WA; Huang WL; Liu YY; Su WC
    Cancer Med; 2021 Apr; 10(7):2370-2379. PubMed ID: 33665980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles.
    Colzani B; Pandolfi L; Hoti A; Iovene PA; Natalello A; Avvakumova S; Colombo M; Prosperi D
    Int J Nanomedicine; 2018; 13():957-973. PubMed ID: 29491709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of the extracellular domain of junctional adhesion molecule-A is associated with resistance to anti-HER2 therapies in breast cancer settings.
    Leech AO; Vellanki SH; Rutherford EJ; Keogh A; Jahns H; Hudson L; O'Donovan N; Sabri S; Abdulkarim B; Sheehan KM; Kay EW; Young LS; Hill ADK; Smith YE; Hopkins AM
    Breast Cancer Res; 2018 Nov; 20(1):140. PubMed ID: 30458861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2.
    Maadi H; Nami B; Tong J; Li G; Wang Z
    BMC Cancer; 2018 Mar; 18(1):238. PubMed ID: 29490608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HER2-Targeted PET Imaging and Therapy of Hyaluronan-Masked HER2-Overexpressing Breast Cancer.
    Pereira PMR; Ragupathi A; Shmuel S; Mandleywala K; Viola NT; Lewis JS
    Mol Pharm; 2020 Jan; 17(1):327-337. PubMed ID: 31804840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CTMP, a predictive biomarker for trastuzumab resistance in HER2-enriched breast cancer patient.
    Chen YC; Li HY; Liang JL; Ger LP; Chang HT; Hsiao M; Calkins MJ; Cheng HC; Chuang JH; Lu PJ
    Oncotarget; 2017 May; 8(18):29699-29710. PubMed ID: 27447863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2 drugs in HER2-positive breast cancer cells.
    Chihara Y; Shimoda M; Hori A; Ohara A; Naoi Y; Ikeda JI; Kagara N; Tanei T; Shimomura A; Shimazu K; Kim SJ; Noguchi S
    Breast Cancer Res Treat; 2017 Nov; 166(1):55-68. PubMed ID: 28702892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic kernel - Supported asymmetric hybrid vesicles for targeting delivery of STAT3-decoy oligonucleotides to overcome anti-HER2 therapeutic resistance of BT474R.
    Shi K; Fang Y; Gao S; Yang D; Bi H; Xue J; Lu A; Li Y; Ke L; Lin X; Jin X; Li M
    J Control Release; 2018 Jun; 279():53-68. PubMed ID: 29655990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of resistance to trastuzumab and molecular sensitization via ADCC activation by exogenous expression of HER2-extracellular domain in human cancer cells.
    Yoshida R; Tazawa H; Hashimoto Y; Yano S; Onishi T; Sasaki T; Shirakawa Y; Kishimoto H; Uno F; Nishizaki M; Kagawa S; Fujiwara T
    Cancer Immunol Immunother; 2012 Nov; 61(11):1905-16. PubMed ID: 22465967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR‑135b‑5p enhances the sensitivity of HER‑2 positive breast cancer to trastuzumab via binding to cyclin D2.
    Li Z; Qin Y; Chen P; Luo Q; Shi H; Jiang X
    Int J Mol Med; 2020 Oct; 46(4):1514-1524. PubMed ID: 32700749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.
    Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS
    Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.