These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 29700524)
21. Facile green synthesis of silicon nanoparticles from Adinarayana TVS; Mishra A; Singhal I; Koti Reddy DVR Nanoscale Adv; 2020 Sep; 2(9):4125-4132. PubMed ID: 36132780 [TBL] [Abstract][Full Text] [Related]
22. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. He X; Nie H; Wang K; Tan W; Wu X; Zhang P Anal Chem; 2008 Dec; 80(24):9597-603. PubMed ID: 19007246 [TBL] [Abstract][Full Text] [Related]
23. Excitation Wavelength Dependent Fluorescence of an ESIPT Triazole Derivative for Amine Sensing and Anti-Counterfeiting Applications. Zhang Y; Yang H; Ma H; Bian G; Zang Q; Sun J; Zhang C; An Z; Wong WY Angew Chem Int Ed Engl; 2019 Jun; 58(26):8773-8778. PubMed ID: 30900323 [TBL] [Abstract][Full Text] [Related]
24. [Excitation-wavelength dependent photoluminescence from porous silicon]. Huang YM; Zhou FF Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):762-4. PubMed ID: 17608193 [TBL] [Abstract][Full Text] [Related]
25. Biofunctional silicon nanoparticles by means of thiol-ene click chemistry. Ruizendaal L; Pujari SP; Gevaerts V; Paulusse JM; Zuilhof H Chem Asian J; 2011 Oct; 6(10):2776-86. PubMed ID: 21954077 [TBL] [Abstract][Full Text] [Related]
26. Silica cross-linked micelles loading with silicon nanoparticles: preparation and characterization. Pan GH; Barras A; Boussekey L; Boukherroub R ACS Appl Mater Interfaces; 2013 Aug; 5(15):7042-9. PubMed ID: 23844671 [TBL] [Abstract][Full Text] [Related]
27. Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Zhong Y; Peng F; Wei X; Zhou Y; Wang J; Jiang X; Su Y; Su S; Lee ST; He Y Angew Chem Int Ed Engl; 2012 Aug; 51(34):8485-9. PubMed ID: 22763914 [TBL] [Abstract][Full Text] [Related]
28. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles. Gao F; Cui P; Chen X; Ye Q; Li M; Wang L Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282 [TBL] [Abstract][Full Text] [Related]
29. Photoluminescence Mechanism of DNA-Templated Silver Nanoclusters: Coupling between Surface Plasmon and Emitter and Sensing of Lysozyme. Liu X; Hu R; Gao Z; Shao N Langmuir; 2015 Jun; 31(21):5859-67. PubMed ID: 25945609 [TBL] [Abstract][Full Text] [Related]
30. Shifting of fluorescence peak in CdS nanoparticles by excitation wavelength change. Mathew S; Ani Joseph S; Radhakrishnan P; Nampoori VP; Vallabhan CP J Fluoresc; 2011 Jul; 21(4):1479-84. PubMed ID: 21246267 [TBL] [Abstract][Full Text] [Related]
31. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Zhang X; Chen X; Kai S; Wang HY; Yang J; Wu FG; Chen Z Anal Chem; 2015 Mar; 87(6):3360-5. PubMed ID: 25671464 [TBL] [Abstract][Full Text] [Related]
33. In situ rapid growth of fluorescent silicon nanoparticles at room temperature and under atmospheric pressure. Zhong Y; Song B; Peng F; Wu Y; Wu S; Su Y; He Y Chem Commun (Camb); 2016 Nov; 52(92):13444-13447. PubMed ID: 27762405 [TBL] [Abstract][Full Text] [Related]
34. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Peng F; Su Y; Zhong Y; Fan C; Lee ST; He Y Acc Chem Res; 2014 Feb; 47(2):612-23. PubMed ID: 24397270 [TBL] [Abstract][Full Text] [Related]
35. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Klein S; Dell'Arciprete ML; Wegmann M; Distel LV; Neuhuber W; Gonzalez MC; Kryschi C Biochem Biophys Res Commun; 2013 May; 434(2):217-22. PubMed ID: 23535374 [TBL] [Abstract][Full Text] [Related]
36. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline. Park M; Lee D; Shin S; Kim HJ; Hyun J Carbohydr Polym; 2016 Apr; 140():43-50. PubMed ID: 26876826 [TBL] [Abstract][Full Text] [Related]
37. Fluorescence resonance energy transfer mediated large Stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. He X; Wang Y; Wang K; Chen M; Chen S Anal Chem; 2012 Nov; 84(21):9056-64. PubMed ID: 23017033 [TBL] [Abstract][Full Text] [Related]
38. Simple Method to Supply Organic Nanoparticles with Excitation-Wavelength-Dependent Photoluminescence. Chen Y; Zhang Q; Willis M; Yao Y; Huang J; Wang B; Yu Y; Zhang S Langmuir; 2020 Mar; 36(12):3193-3200. PubMed ID: 32148045 [TBL] [Abstract][Full Text] [Related]
39. [Effect of host MCM-41 on the luminescence properties of Tb(aspirin)3phen]. Peng CJ; Wei CP; Zhu CM Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2498-502. PubMed ID: 19271475 [TBL] [Abstract][Full Text] [Related]
40. 8-aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension. Rastogi SK; Pal P; Aston DE; Bitterwolf TE; Branen AL ACS Appl Mater Interfaces; 2011 May; 3(5):1731-9. PubMed ID: 21510674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]