BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29700782)

  • 41. A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering.
    Wang Y; He C; Feng Y; Yang Y; Wei Z; Zhao W; Zhao C
    J Mater Chem B; 2020 Jan; 8(3):568-577. PubMed ID: 31854426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion.
    Venkat Kumar G; Su CH; Velusamy P
    Biofouling; 2016 Sep; 32(8):861-70. PubMed ID: 27436679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.
    Kucinska-Lipka J; Gubanska I; Janik H; Sienkiewicz M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():166-76. PubMed ID: 25491973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative In vitro evaluation of two different preparations of small diameter polyurethane vascular grafts.
    Hsu Sh; Tseng Hj; Wu Ms
    Artif Organs; 2000 Feb; 24(2):119-28. PubMed ID: 10718765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of microporous thermoplastic polyurethane for use as small-diameter vascular graft material. I. Phase-inversion method.
    Khorasani MT; Shorgashti S
    J Biomed Mater Res B Appl Biomater; 2006 Jan; 76(1):41-8. PubMed ID: 16161121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of microporous polyurethane by spray phase inversion method as small diameter vascular grafts material.
    Khorasani MT; Shorgashti S
    J Biomed Mater Res A; 2006 May; 77(2):253-60. PubMed ID: 16392129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental studies on application of small-caliber vascular prosthesis produced by polyurethane.
    Miyamoto K; Sugimoto T; Okada M; Maeda S
    Ann Thorac Cardiovasc Surg; 1999 Jun; 5(3):174-81. PubMed ID: 10413764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrospun gelatin/polyurethane blended nanofibers for wound healing.
    Kim SE; Heo DN; Lee JB; Kim JR; Park SH; Jeon SH; Kwon IK
    Biomed Mater; 2009 Aug; 4(4):044106. PubMed ID: 19671952
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan.
    Muzaffar S; Bhatti IA; Zuber M; Bhatti HN; Shahid M
    Int J Biol Macromol; 2017 Jan; 94(Pt A):51-60. PubMed ID: 27702659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.
    Ullah S; Zainol I; Idrus RH
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1020-1029. PubMed ID: 28668615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.
    Gan Q; Wang T; Cochrane C; McCarron P
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel microporous polyurethane blood conduit: biocompatibility assessment of the UTA arterial prosthesis by an organo-typic culture technique.
    Sigot-Luizard MF; Sigot M; Guidoin R; King M; von Maltzahn WW; Kowligi R; Eberhart RC
    J Invest Surg; 1993; 6(3):251-71. PubMed ID: 8398998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide.
    Zhu Y; Gao C; Guan J; Shen J
    J Mater Sci Mater Med; 2004 Mar; 15(3):283-9. PubMed ID: 15335001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery.
    Antoniraj MG; Ayyavu M; Henry LJK; Nageshwar Rao G; Natesan S; Sundar DS; Kandasamy R
    Drug Dev Ind Pharm; 2018 Mar; 44(3):365-376. PubMed ID: 28835136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous polyurethane tubes as vascular graft.
    Fujimoto K; Minato M; Miyamoto S; Kaneko T; Kikuchi H; Sakai K; Okada M; Ikada Y
    J Appl Biomater; 1993; 4(4):347-54. PubMed ID: 10146534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced Patency and Endothelialization of Small-Caliber Vascular Grafts Fabricated by Coimmobilization of Heparin and Cell-Adhesive Peptides.
    Choi WS; Joung YK; Lee Y; Bae JW; Park HK; Park YH; Park JC; Park KD
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4336-46. PubMed ID: 26824876
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of morphological properties of fibrous electrospun polyurethane grafts using image segmentation.
    Ochola J; Hume C; Bezuidenhout D
    J Mech Behav Biomed Mater; 2024 Jul; 155():106573. PubMed ID: 38744117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile preparation of a controlled-release tubular scaffold for blood vessel implantation.
    Guo X; Zhu J; Zhang H; You Z; Morsi Y; Mo X; Zhu T
    J Colloid Interface Sci; 2019 Mar; 539():351-360. PubMed ID: 30594010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.