These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29701144)

  • 1. Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis.
    Patterson S; Fairlamb AH
    Curr Med Chem; 2019; 26(23):4454-4475. PubMed ID: 29701144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives.
    Wilkinson SR; Bot C; Kelly JM; Hall BS
    Curr Top Med Chem; 2011; 11(16):2072-84. PubMed ID: 21619510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Bicyclic Nitro-drugs by a Novel Nitroreductase (NTR2) in Leishmania.
    Wyllie S; Roberts AJ; Norval S; Patterson S; Foth BJ; Berriman M; Read KD; Fairlamb AH
    PLoS Pathog; 2016 Nov; 12(11):e1005971. PubMed ID: 27812217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis.
    Sokolova AY; Wyllie S; Patterson S; Oza SL; Read KD; Fairlamb AH
    Antimicrob Agents Chemother; 2010 Jul; 54(7):2893-900. PubMed ID: 20439607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the essentiality of Leishmania donovani nitroreductase and its role in nitro drug activation.
    Wyllie S; Patterson S; Fairlamb AH
    Antimicrob Agents Chemother; 2013 Feb; 57(2):901-6. PubMed ID: 23208716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease.
    Nicoll-Griffith DA
    Expert Opin Drug Discov; 2012 Apr; 7(4):353-66. PubMed ID: 22458506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis.
    Wyllie S; Patterson S; Stojanovski L; Simeons FR; Norval S; Kime R; Read KD; Fairlamb AH
    Sci Transl Med; 2012 Feb; 4(119):119re1. PubMed ID: 22301556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis.
    Bastos IM; Motta FN; Grellier P; Santana JM
    Curr Med Chem; 2013; 20(25):3103-15. PubMed ID: 23514419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates.
    García-Estrada C; Pérez-Pertejo Y; Domínguez-Asenjo B; Holanda VN; Murugesan S; Martínez-Valladares M; Balaña-Fouce R; Reguera RM
    Biomolecules; 2023 Apr; 13(4):. PubMed ID: 37189384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the substrate preference of a type I nitroreductase to develop antitrypanosomal quinone-based prodrugs.
    Hall BS; Meredith EL; Wilkinson SR
    Antimicrob Agents Chemother; 2012 Nov; 56(11):5821-30. PubMed ID: 22948871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents.
    Papadopoulou MV; Bloomer WD; Rosenzweig HS; Chatelain E; Kaiser M; Wilkinson SR; McKenzie C; Ioset JR
    J Med Chem; 2012 Jun; 55(11):5554-65. PubMed ID: 22550999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel functionalized melamine-based nitroheterocycles: synthesis and activity against trypanosomatid parasites.
    Baliani A; Peal V; Gros L; Brun R; Kaiser M; Barrett MP; Gilbert IH
    Org Biomol Chem; 2009 Mar; 7(6):1154-66. PubMed ID: 19262935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanocidal and leishmanicidal activity of six limonoids.
    Steverding D; Sidjui LS; Ferreira ÉR; Ngameni B; Folefoc GN; Mahiou-Leddet V; Ollivier E; Stephenson GR; Storr TE; Tyler KM
    J Nat Med; 2020 Jun; 74(3):606-611. PubMed ID: 32277328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diamidines as antitrypanosomal, antileishmanial and antimalarial agents.
    Werbovetz K
    Curr Opin Investig Drugs; 2006 Feb; 7(2):147-57. PubMed ID: 16499285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A promising pipeline of preclinical drug candidates for leishmaniasis and chronic Chagas' disease.
    Saldivia M; Lima APCA; Mottram JC
    Trends Parasitol; 2024 Mar; 40(3):211-213. PubMed ID: 38368155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine proteases as potential targets for anti-trypanosomatid drug discovery.
    Judice WAS; Ferraz LS; Lopes RM; Vianna LDS; Siqueira FDS; Di Iorio JF; Dalzoto LAM; Trujilho MNR; Santos TDR; Machado MFM; Rodrigues T
    Bioorg Med Chem; 2021 Sep; 46():116365. PubMed ID: 34419821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes.
    Gilbert IH
    Biochim Biophys Acta; 2002 Jul; 1587(2-3):249-57. PubMed ID: 12084467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis.
    Salem MM; Werbovetz KA
    Curr Med Chem; 2006; 13(21):2571-98. PubMed ID: 17017912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Management of trypanosomiasis and leishmaniasis.
    Barrett MP; Croft SL
    Br Med Bull; 2012; 104(1):175-96. PubMed ID: 23137768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanosomatid parasites causing neglected diseases.
    Nussbaum K; Honek J; Cadmus CM; Efferth T
    Curr Med Chem; 2010; 17(15):1594-617. PubMed ID: 20166934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.