These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29701216)

  • 21. Functionalization of a GaSe monolayer by vacancy and chemical element doping.
    Ao L; Xiao HY; Xiang X; Li S; Liu KZ; Huang H; Zu XT
    Phys Chem Chem Phys; 2015 Apr; 17(16):10737-48. PubMed ID: 25811299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Band gap opening of graphene by doping small boron nitride domains.
    Fan X; Shen Z; Liu AQ; Kuo JL
    Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doping of rhenium disulfide monolayers: a systematic first principles study.
    Çakır D; Sahin H; Peeters FM
    Phys Chem Chem Phys; 2014 Aug; 16(31):16771-9. PubMed ID: 25001566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure.
    Ding YM; Shi JJ; Xia C; Zhang M; Du J; Huang P; Wu M; Wang H; Cen YL; Pan SH
    Nanoscale; 2017 Oct; 9(38):14682-14689. PubMed ID: 28944803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties.
    Ma D; Lu Z; Ju W; Tang Y
    J Phys Condens Matter; 2012 Apr; 24(14):145501. PubMed ID: 22410806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electric field analyses on monolayer semiconductors: the example of InSe.
    Wang XP; Li XB; Chen NK; Zhao JH; Chen QD; Sun HB
    Phys Chem Chem Phys; 2018 Mar; 20(10):6945-6950. PubMed ID: 29465118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe.
    Lei S; Ge L; Najmaei S; George A; Kappera R; Lou J; Chhowalla M; Yamaguchi H; Gupta G; Vajtai R; Mohite AD; Ajayan PM
    ACS Nano; 2014 Feb; 8(2):1263-72. PubMed ID: 24392873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of Carrier Polarity in Fowler-Nordheim Tunneling and Evidence of Fermi Level Pinning at the Hexagonal Boron Nitride/Metal Interface.
    Hattori Y; Taniguchi T; Watanabe K; Nagashio K
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11732-11738. PubMed ID: 29552882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Ce, Nd, Eu and Tm Dopants on the Properties of InSe Monolayer: A First-Principles Study.
    Xie Z; Chen L
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies.
    Park S; Park C; Kim G
    J Chem Phys; 2014 Apr; 140(13):134706. PubMed ID: 24712807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insulating to metallic transition of an oxidized boron nitride nanosheet coating by tuning surface oxygen adsorption.
    Guo Y; Guo W
    Nanoscale; 2014 Apr; 6(7):3731-6. PubMed ID: 24569839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene-like monolayer InSe-X: several promising half-metallic nanosheets in spintronics.
    Liu J; Kang W; Zhou TY; Ma CG
    J Phys Condens Matter; 2018 Apr; 30(15):155306. PubMed ID: 29513265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable electronic properties of an Sb/InSe van der Waals heterostructure by electric field effects.
    Zhang Z; Zhang Y; Xie Z; Wei X; Guo T; Fan J; Ni L; Tian Y; Liu J; Duan L
    Phys Chem Chem Phys; 2019 Mar; 21(10):5627-5633. PubMed ID: 30793138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. InSe: a two-dimensional material with strong interlayer coupling.
    Sun Y; Luo S; Zhao XG; Biswas K; Li SL; Zhang L
    Nanoscale; 2018 May; 10(17):7991-7998. PubMed ID: 29610784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adjusting band gap and charge transfer of organometallic complex adsorbed on MoS
    Bui VQ; Le HM; Kawazoe Y; Kim Y
    J Phys Condens Matter; 2017 Jan; 29(1):015003. PubMed ID: 27830656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance improvement of multilayer InSe transistors with optimized metal contacts.
    Feng W; Zhou X; Tian WQ; Zheng W; Hu P
    Phys Chem Chem Phys; 2015 Feb; 17(5):3653-8. PubMed ID: 25554466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transition metal atoms absorbed on MoS
    Wu Y; Huang Z; Liu H; He C; Xue L; Qi X; Zhong J
    Phys Chem Chem Phys; 2018 Jun; 20(25):17387-17392. PubMed ID: 29905350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacial Charge Transfer and Ultrafast Photonics Application of 2D Graphene/InSe Heterostructure.
    Li J; Wang L; Chen Y; Li Y; Zhu H; Li L; Tong L
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.