These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29701486)

  • 1. Can an automated sleep detection algorithm for waist-worn accelerometry replace sleep logs?
    Barreira TV; Redmond JG; Brutsaert TD; Schuna JM; Mire EF; Katzmarzyk PT; Tudor-Locke C
    Appl Physiol Nutr Metab; 2018 Oct; 43(10):1027-1032. PubMed ID: 29701486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying children's nocturnal sleep using 24-h waist accelerometry.
    Barreira TV; Schuna JM; Mire EF; Katzmarzyk PT; Chaput JP; Leduc G; Tudor-Locke C
    Med Sci Sports Exerc; 2015 May; 47(5):937-43. PubMed ID: 25202840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated waist-worn accelerometer algorithm for detecting children's sleep-period time separate from 24-h physical activity or sedentary behaviors.
    Tudor-Locke C; Barreira TV; Schuna JM; Mire EF; Katzmarzyk PT
    Appl Physiol Nutr Metab; 2014 Jan; 39(1):53-7. PubMed ID: 24383507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical activity using wrist-worn accelerometers: comparison of dominant and non-dominant wrist.
    Dieu O; Mikulovic J; Fardy PS; Bui-Xuan G; Béghin L; Vanhelst J
    Clin Physiol Funct Imaging; 2017 Sep; 37(5):525-529. PubMed ID: 26749436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition.
    Lee PH; Suen LK
    Sleep Breath; 2017 Mar; 21(1):209-215. PubMed ID: 27614441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands.
    Plekhanova T; Rowlands AV; Davies MJ; Hall AP; Yates T; Edwardson CL
    J Sleep Res; 2023 Jun; 32(3):e13760. PubMed ID: 36317222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating sleep efficiency in 10- to- 13-year-olds using a waist-worn accelerometer.
    Borghese MM; Lin Y; Chaput JP; Janssen I
    Sleep Health; 2018 Feb; 4(1):110-115. PubMed ID: 29332671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated algorithms for detecting sleep period time using a multi-sensor pattern-recognition activity monitor from 24 h free-living data in older adults.
    Cabanas-Sánchez V; Higueras-Fresnillo S; De la Cámara MÁ; Veiga OL; Martinez-Gomez D
    Physiol Meas; 2018 May; 39(5):055002. PubMed ID: 29667936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study.
    Keadle SK; Shiroma EJ; Freedson PS; Lee IM
    BMC Public Health; 2014 Nov; 14():1210. PubMed ID: 25421941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
    Choi L; Ward SC; Schnelle JF; Buchowski MS
    Med Sci Sports Exerc; 2012 Oct; 44(10):2009-16. PubMed ID: 22525772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of an automated algorithm to identify a window of consecutive days of accelerometer wear for large-scale studies.
    Rillamas-Sun E; Buchner DM; Di C; Evenson KR; LaCroix AZ
    BMC Res Notes; 2015 Jun; 8():270. PubMed ID: 26113170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are parent-reported sleep logs essential? A comparison of three approaches to guide open source accelerometry-based nocturnal sleep processing in children.
    Burkart S; Beets MW; Pfledderer CD; von Klinggraeff L; Zhu X; St Laurent CW; van Hees VT; Armstrong B; Weaver RG; Adams EL
    J Sleep Res; 2024 Aug; 33(4):e14112. PubMed ID: 38009378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the pain of activity log-books worth the gain in precision when distinguishing wear and non-wear time for tri-axial accelerometers?
    Peeters G; van Gellecum Y; Ryde G; Farías NA; Brown WJ
    J Sci Med Sport; 2013 Nov; 16(6):515-9. PubMed ID: 23294696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is it on? An algorithm for discerning wrist-accelerometer non-wear times from sleep/wake activity.
    Kosmadopoulos A; Darwent D; Roach GD
    Chronobiol Int; 2016; 33(6):599-603. PubMed ID: 27096291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE).
    Tudor-Locke C; Barreira TV; Schuna JM; Mire EF; Chaput JP; Fogelholm M; Hu G; Kuriyan R; Kurpad A; Lambert EV; Maher C; Maia J; Matsudo V; Olds T; Onywera V; Sarmiento OL; Standage M; Tremblay MS; Zhao P; Church TS; Katzmarzyk PT;
    Int J Behav Nutr Phys Act; 2015 Feb; 12():11. PubMed ID: 25881074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Day-level sedentary pattern estimates derived from hip-worn accelerometer cut-points in 8-12-year-olds: Do they reflect postural transitions?
    Carlson JA; Bellettiere J; Kerr J; Salmon J; Timperio A; Verswijveren SJJM; Ridgers ND
    J Sports Sci; 2019 Aug; 37(16):1899-1909. PubMed ID: 31002287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry.
    Gomersall SR; Ng N; Burton NW; Pavey TG; Gilson ND; Brown WJ
    J Med Internet Res; 2016 Sep; 18(9):e239. PubMed ID: 27604226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nocturnal sleep-related variables from 24-h free-living waist-worn accelerometry: International Study of Childhood Obesity, Lifestyle and the Environment.
    Tudor-Locke C; Mire EF; Barreira TV; Schuna JM; Chaput JP; Fogelholm M; Hu G; Kurpad A; Kuriyan R; Lambert EV; Maher C; Maia J; Matsudo V; Olds T; Onywera V; Sarmiento OL; Standage M; Tremblay MS; Zhao P; Church TS; Katzmarzyk PT;
    Int J Obes Suppl; 2015 Dec; 5(Suppl 2):S47-52. PubMed ID: 27152185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Commercial Wrist-Based and Smartphone Accelerometers, Actigraphy, and PSG in a Clinical Cohort of Children and Adolescents.
    Toon E; Davey MJ; Hollis SL; Nixon GM; Horne RS; Biggs SN
    J Clin Sleep Med; 2016 Mar; 12(3):343-50. PubMed ID: 26446248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying waking time in 24-h accelerometry data in adults using an automated algorithm.
    van der Berg JD; Willems PJ; van der Velde JH; Savelberg HH; Schaper NC; Schram MT; Sep SJ; Dagnelie PC; Bosma H; Stehouwer CD; Koster A
    J Sports Sci; 2016 Oct; 34(19):1867-73. PubMed ID: 26837855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.