These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 29701731)

  • 1. Purcell effect in active diamond nanoantennas.
    Zalogina AS; Savelev RS; Ushakova EV; Zograf GP; Komissarenko FE; Milichko VA; Makarov SV; Zuev DA; Shadrivov IV
    Nanoscale; 2018 May; 10(18):8721-8727. PubMed ID: 29701731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale controlled coupling of single-photon emitters to high-index dielectric nanoantennas by AFM nanoxerography.
    Humbert M; Hernandez R; Mallet N; Larrieu G; Larrey V; Fournel F; Guérin F; Palleau E; Paillard V; Cuche A; Ressier L
    Nanoscale; 2023 Jan; 15(2):599-608. PubMed ID: 36485024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric optical nanoantennas.
    Hasan MR; Hellesø OG
    Nanotechnology; 2021 May; 32(20):202001. PubMed ID: 33461187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas.
    Lepeshov S; Krasnok A; Alù A
    Nanotechnology; 2019 Jun; 30(25):254004. PubMed ID: 30844774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Dielectric Nanopillar Antenna-Resonators for Efficient Collected Photon Rate from Silicon Carbide Color Centers.
    Inam FA; Castelletto S
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light-Matter Interactions.
    Zotev PG; Wang Y; Sortino L; Severs Millard T; Mullin N; Conteduca D; Shagar M; Genco A; Hobbs JK; Krauss TF; Tartakovskii AI
    ACS Nano; 2022 Apr; 16(4):6493-6505. PubMed ID: 35385647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous Light Emission Assisted by Mie Resonances in Diamond Nanoparticles.
    Obydennov DV; Shilkin DA; Elyas EI; Yaroshenko VV; Kudryavtsev OS; Zuev DA; Lyubin EV; Ekimov EA; Vlasov II; Fedyanin AA
    Nano Lett; 2021 Dec; 21(23):10127-10132. PubMed ID: 34492189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Emitting Halide Perovskite Nanoantennas.
    Tiguntseva EY; Zograf GP; Komissarenko FE; Zuev DA; Zakhidov AA; Makarov SV; Kivshar YS
    Nano Lett; 2018 Feb; 18(2):1185-1190. PubMed ID: 29365259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional Emission from Dielectric Leaky-Wave Nanoantennas.
    Peter M; Hildebrandt A; Schlickriede C; Gharib K; Zentgraf T; Förstner J; Linden S
    Nano Lett; 2017 Jul; 17(7):4178-4183. PubMed ID: 28617604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic optical antennas: scattering properties and fluorescence enhancement.
    Guo K; Antoncecchi A; Zheng X; Sallam M; Soliman EA; Vandenbosch GAE; Moshchalkov VV; Koenderink AF
    Sci Rep; 2017 Jul; 7(1):6223. PubMed ID: 28740235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-Temperature Lasing from Mie-Resonant Nonplasmonic Nanoparticles.
    Tiguntseva E; Koshelev K; Furasova A; Tonkaev P; Mikhailovskii V; Ushakova EV; Baranov DG; Shegai T; Zakhidov AA; Kivshar Y; Makarov SV
    ACS Nano; 2020 Jul; 14(7):8149-8156. PubMed ID: 32484650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-dielectric antennas for efficient photon collection from diamond color centers.
    Karamlou A; Trusheim ME; Englund D
    Opt Express; 2018 Feb; 26(3):3341-3352. PubMed ID: 29401863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas.
    Shibanuma T; Albella P; Maier SA
    Nanoscale; 2016 Aug; 8(29):14184-92. PubMed ID: 27389310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically resonant dielectric nanostructures.
    Kuznetsov AI; Miroshnichenko AE; Brongersma ML; Kivshar YS; Luk'yanchuk B
    Science; 2016 Nov; 354(6314):. PubMed ID: 27856851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse Scattering and Generalized Kerker Effects in All-Dielectric Mie-Resonant Metaoptics.
    Shamkhi HK; Baryshnikova KV; Sayanskiy A; Kapitanova P; Terekhov PD; Belov P; Karabchevsky A; Evlyukhin AB; Kivshar Y; Shalin AS
    Phys Rev Lett; 2019 May; 122(19):193905. PubMed ID: 31144914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres.
    Salas-Montiel R; Berthel M; Beltran-Madrigal J; Huant S; Drezet A; Blaize S
    Nanotechnology; 2017 May; 28(20):205207. PubMed ID: 28323249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Study on Mie Resonances in Single GaAs Nanomembranes.
    Raya AM; Fuster D; Llorens JM
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31195647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas.
    Cambiasso J; Grinblat G; Li Y; Rakovich A; Cortés E; Maier SA
    Nano Lett; 2017 Feb; 17(2):1219-1225. PubMed ID: 28094990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong magnetic resonances and largely enhanced second-harmonic generation of colloidal MoS
    Ding SJ; Luo ZJ; Xie YM; Pan GM; Qiu YH; Chen K; Zhou L; Wang J; Lin HQ; Wang QQ
    Nanoscale; 2017 Dec; 10(1):124-131. PubMed ID: 29231226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.