These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29701965)

  • 1. Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface.
    Qian J; An Q; Fortunelli A; Nielsen RJ; Goddard WA
    J Am Chem Soc; 2018 May; 140(20):6288-6297. PubMed ID: 29701965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design.
    Fuller J; An Q; Fortunelli A; Goddard WA
    Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface.
    Fuller J; Fortunelli A; Goddard WA; An Q
    Phys Chem Chem Phys; 2019 Jun; 21(21):11444-11454. PubMed ID: 31112166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si-Doped Fe Catalyst for Ammonia Synthesis at Dramatically Decreased Pressures and Temperatures.
    An Q; Mcdonald M; Fortunelli A; Goddard WA
    J Am Chem Soc; 2020 May; 142(18):8223-8232. PubMed ID: 32271551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM-Mechanism-Based Hierarchical High-Throughput in Silico Screening Catalyst Design for Ammonia Synthesis.
    An Q; Shen Y; Fortunelli A; Goddard WA
    J Am Chem Soc; 2018 Dec; 140(50):17702-17710. PubMed ID: 30479122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.
    Kozuch S; Shaik S
    J Phys Chem A; 2008 Jul; 112(26):6032-41. PubMed ID: 18537227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous Fe
    Liu JC; Ma XL; Li Y; Wang YG; Xiao H; Li J
    Nat Commun; 2018 Apr; 9(1):1610. PubMed ID: 29686395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Green Ammonia Synthesis through Plasma-Driven Nitrogen Oxidation and Catalytic Reduction.
    Hollevoet L; Jardali F; Gorbanev Y; Creel J; Bogaerts A; Martens JA
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23825-23829. PubMed ID: 32926543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Behavior of K-doped Fe/MgO Catalysts for Ammonia Synthesis Under Mild Reaction Conditions.
    Era K; Sato K; Miyahara SI; Naito T; De Silva K; Akrami S; Yamada H; Toriyama T; Yamamoto T; Murakami Y; Aika KI; Inazu K; Nagaoka K
    ChemSusChem; 2023 Nov; 16(22):e202300942. PubMed ID: 37877342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co nanoparticles supported on mixed magnesium-lanthanum oxides: effect of calcium and barium addition on ammonia synthesis catalyst performance.
    Ronduda H; Zybert M; Patkowski W; Moszyński D; Albrecht A; Sobczak K; Małolepszy A; Raróg-Pilecka W
    RSC Adv; 2023 Jan; 13(7):4787-4802. PubMed ID: 36760280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and kinetics for both thermal and electrochemical reduction of N
    Chen LY; Kuo TC; Hong ZS; Cheng MJ; Goddard WA
    Phys Chem Chem Phys; 2019 Aug; 21(32):17605-17612. PubMed ID: 31384855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physical catalyst for the electrolysis of nitrogen to ammonia.
    Song Y; Johnson D; Peng R; Hensley DK; Bonnesen PV; Liang L; Huang J; Yang F; Zhang F; Qiao R; Baddorf AP; Tschaplinski TJ; Engle NL; Hatzell MC; Wu Z; Cullen DA; Meyer HM; Sumpter BG; Rondinone AJ
    Sci Adv; 2018 Apr; 4(4):e1700336. PubMed ID: 29719860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: a combined density functional theory and kinetic Monte Carlo study.
    Yeo SC; Lo YC; Li J; Lee HM
    J Chem Phys; 2014 Oct; 141(13):134108. PubMed ID: 25296785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of N
    Musgrave CB; Morozov S; Schinski WL; Goddard WA
    J Phys Chem Lett; 2021 Feb; 12(6):1696-1701. PubMed ID: 33560856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis.
    An Q; McDonald M; Fortunelli A; Goddard WA
    ACS Nano; 2021 Jan; 15(1):1675-1684. PubMed ID: 33355457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elementary kinetics of nitrogen electroreduction on Fe surfaces.
    Maheshwari S; Rostamikia G; Janik MJ
    J Chem Phys; 2019 Jan; 150(4):041708. PubMed ID: 30709282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the role of potassium addition on the surface chemistry and catalytic properties of cobalt catalysts for ammonia synthesis.
    Ronduda H; Zybert M; Patkowski W; Ostrowski A; Sobczak K; Moszyński D; Raróg-Pilecka W
    RSC Adv; 2024 Jul; 14(32):23095-23108. PubMed ID: 39040700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles.
    Yang X; Nash J; Anibal J; Dunwell M; Kattel S; Stavitski E; Attenkofer K; Chen JG; Yan Y; Xu B
    J Am Chem Soc; 2018 Oct; 140(41):13387-13391. PubMed ID: 30244579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-assisted catalytic formation of ammonia in N
    Ben Yaala M; Saeedi A; Scherrer DF; Moser L; Steiner R; Zutter M; Oberkofler M; De Temmerman G; Marot L; Meyer E
    Phys Chem Chem Phys; 2019 Jul; 21(30):16623-16633. PubMed ID: 31317167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational investigation of NH3 adsorption and dehydrogenation on a W-modified Fe(111) surface.
    Hsiao MK; Su CH; Liu CY; Chen HL
    Phys Chem Chem Phys; 2015 Nov; 17(45):30598-605. PubMed ID: 26524324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.