BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29701984)

  • 21. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts.
    Harsch MJ; Gardner RC
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):223-35. PubMed ID: 22684328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast genes required for conversion of grape precursors to varietal thiols in wine.
    Santiago M; Gardner RC
    FEMS Yeast Res; 2015 Aug; 15(5):fov034. PubMed ID: 26038341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coinoculated fermentations using saccharomyces yeasts affect the volatile composition and sensory properties of Vitis vinifera L. cv. sauvignon blanc wines.
    King ES; Swiegers JH; Travis B; Francis IL; Bastian SE; Pretorius IS
    J Agric Food Chem; 2008 Nov; 56(22):10829-37. PubMed ID: 18942843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma.
    Swiegers JH; Capone DL; Pardon KH; Elsey GM; Sefton MA; Francis IL; Pretorius IS
    Yeast; 2007 Jul; 24(7):561-74. PubMed ID: 17492802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption.
    Parker M; Capone DL; Francis IL; Herderich MJ
    J Agric Food Chem; 2018 Mar; 66(10):2281-2286. PubMed ID: 28220693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Straightforward synthesis of deuterated precursors to demonstrate the biogenesis of aromatic thiols in wine.
    Roland A; Schneider R; Razungles A; Le Guernevé C; Cavelier F
    J Agric Food Chem; 2010 Oct; 58(19):10684-9. PubMed ID: 20825191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thiol precursors in Vitis mould-tolerant hybrid varieties.
    Nicolini G; Roman T; Flamini R; Tonidandel L; Gardiman M; Larcher R
    J Sci Food Agric; 2020 May; 100(7):3262-3268. PubMed ID: 32086798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the relative contribution of four precursors to 3-sulfanylhexan-1-ol and 3-sulfanylhexylacetate biogenesis during fermentation.
    Muhl JR; Pilkington LI; Fedrizzi B; Deed RC
    Food Chem; 2024 Aug; 449():139193. PubMed ID: 38604037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new analytical method to measure S-methyl-l-methionine in grape juice reveals the influence of yeast on dimethyl sulfide production during fermentation.
    Deed RC; Pilkington LI; Herbst-Johnstone M; Miskelly GM; Barker D; Fedrizzi B
    J Sci Food Agric; 2019 Dec; 99(15):6944-6953. PubMed ID: 31414495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The grape must non-Saccharomyces microbial community: impact on volatile thiol release.
    Zott K; Thibon C; Bely M; Lonvaud-Funel A; Dubourdieu D; Masneuf-Pomarede I
    Int J Food Microbiol; 2011 Dec; 151(2):210-5. PubMed ID: 21974981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions.
    Loscos N; Hernandez-Orte P; Cacho J; Ferreira V
    J Agric Food Chem; 2007 Aug; 55(16):6674-84. PubMed ID: 17616208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aromatic potential of botrytized white wine grapes: identification and quantification of new cysteine-S-conjugate flavor precursors.
    Thibon C; Shinkaruk S; Jourdes M; Bennetau B; Dubourdieu D; Tominaga T
    Anal Chim Acta; 2010 Feb; 660(1-2):190-6. PubMed ID: 20103162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae.
    Medina K; Boido E; Fariña L; Gioia O; Gomez ME; Barquet M; Gaggero C; Dellacassa E; Carrau F
    Food Chem; 2013 Dec; 141(3):2513-21. PubMed ID: 23870989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chiral analysis of 3-sulfanylhexan-1-ol and 3-sulfanylhexyl acetate in wine by high-performance liquid chromatography-tandem mass spectrometry.
    Chen L; Capone DL; Jeffery DW
    Anal Chim Acta; 2018 Jan; 998():83-92. PubMed ID: 29153090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation.
    Pinu FR; Edwards PJ; Gardner RC; Villas-Boas SG
    FEMS Yeast Res; 2014 Dec; 14(8):1206-22. PubMed ID: 25345561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and quantitation of 3-S-cysteinylglycinehexan-1-ol (Cysgly-3-MH) in Sauvignon blanc grape juice by HPLC-MS/MS.
    Capone DL; Pardon KH; Cordente AG; Jeffery DW
    J Agric Food Chem; 2011 Oct; 59(20):11204-10. PubMed ID: 21942856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel method for quantification of 2-methyl-3-furanthiol and 2-furanmethanethiol in wines made from Vitis vinifera grape varieties.
    Tominaga T; Dubourdieu D
    J Agric Food Chem; 2006 Jan; 54(1):29-33. PubMed ID: 16390173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive lipidome profiling of Sauvignon blanc grape juice.
    Tumanov S; Zubenko Y; Greven M; Greenwood DR; Shmanai V; Villas-Boas SG
    Food Chem; 2015 Aug; 180():249-256. PubMed ID: 25766825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of Volatile Sulfur Compounds during Wine Fermentation.
    Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B
    J Agric Food Chem; 2015 Sep; 63(36):8017-24. PubMed ID: 26271945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of postharvest ultra-violet light irradiation on the thiol content of Sauvignon blanc grapes.
    Parish-Virtue K; Herbst-Johnstone M; Bouda F; Fedrizzi B
    Food Chem; 2019 Jan; 271():747-752. PubMed ID: 30236740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.