These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29701988)

  • 1. Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces.
    Fiorino A; Thompson D; Zhu L; Song B; Reddy P; Meyhofer E
    Nano Lett; 2018 Jun; 18(6):3711-3715. PubMed ID: 29701988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps.
    Song B; Thompson D; Fiorino A; Ganjeh Y; Reddy P; Meyhofer E
    Nat Nanotechnol; 2016 Jun; 11(6):509-514. PubMed ID: 26950244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement and Saturation of Near-Field Radiative Heat Transfer in Nanogaps between Metallic Surfaces.
    Rincón-García L; Thompson D; Mittapally R; Agraït N; Meyhofer E; Reddy P
    Phys Rev Lett; 2022 Sep; 129(14):145901. PubMed ID: 36240403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of near-field radiative heat transfer using polar dielectric thin films.
    Song B; Ganjeh Y; Sadat S; Thompson D; Fiorino A; Fernández-Hurtado V; Feist J; Garcia-Vidal FJ; Cuevas JC; Reddy P; Meyhofer E
    Nat Nanotechnol; 2015 Mar; 10(3):253-8. PubMed ID: 25705866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface phonon polaritons mediated energy transfer between nanoscale gaps.
    Shen S; Narayanaswamy A; Chen G
    Nano Lett; 2009 Aug; 9(8):2909-13. PubMed ID: 19719110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong near-field enhancement of radiative heat transfer between metallic surfaces.
    Kralik T; Hanzelka P; Zobac M; Musilova V; Fort T; Horak M
    Phys Rev Lett; 2012 Nov; 109(22):224302. PubMed ID: 23368126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Limits to Near-Field Heat Transfer Enhancements in Phonon-Polaritonic Materials.
    Mittapally R; Lim JW; Zhang L; Miller OD; Reddy P; Meyhofer E
    Nano Lett; 2023 Mar; 23(6):2187-2194. PubMed ID: 36888651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap.
    Bernardi MP; Milovich D; Francoeur M
    Nat Commun; 2016 Sep; 7():12900. PubMed ID: 27682992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative heat transfer in the extreme near field.
    Kim K; Song B; Fernández-Hurtado V; Lee W; Jeong W; Cui L; Thompson D; Feist J; Reid MT; García-Vidal FJ; Cuevas JC; Meyhofer E; Reddy P
    Nature; 2015 Dec; 528(7582):387-91. PubMed ID: 26641312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colossal Near-Field Radiative Heat Transfer Mediated by Coupled Polaritons with an Ultrahigh Dynamic Range.
    Zhang W; Wang B; Jin S; Zhou J; Gong Z; Zhao C
    Adv Mater; 2024 Sep; 36(36):e2405885. PubMed ID: 39082203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corner- and edge-mode enhancement of near-field radiative heat transfer.
    Tang L; Corrêa LM; Francoeur M; Dames C
    Nature; 2024 May; 629(8010):67-73. PubMed ID: 38632409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A near-field radiative heat transfer device.
    DeSutter J; Tang L; Francoeur M
    Nat Nanotechnol; 2019 Aug; 14(8):751-755. PubMed ID: 31263192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures.
    Yan S; Luan Y; Lim JW; Mittapally R; Reihani A; Wang Z; Tsurimaki Y; Fan S; Reddy P; Meyhofer E
    Phys Rev Lett; 2023 Nov; 131(19):196302. PubMed ID: 38000410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit.
    Thompson D; Zhu L; Mittapally R; Sadat S; Xing Z; McArdle P; Qazilbash MM; Reddy P; Meyhofer E
    Nature; 2018 Sep; 561(7722):216-221. PubMed ID: 30177825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.
    Ito K; Nishikawa K; Miura A; Toshiyoshi H; Iizuka H
    Nano Lett; 2017 Jul; 17(7):4347-4353. PubMed ID: 28594564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Near-Field Radiative Heat Transfer between Graphene/hBN Systems.
    Lu L; Zhang B; Ou H; Li B; Zhou K; Song J; Luo Z; Cheng Q
    Small; 2022 May; 18(19):e2108032. PubMed ID: 35277922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant near-field radiative heat transfer between ultrathin metallic films.
    Wang L; Bie M; Cai W; Ge L; Ji Z; Jia Y; Gong K; Zhang X; Wang J; Xu J
    Opt Express; 2019 Dec; 27(25):36790-36798. PubMed ID: 31873451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward applications of near-field radiative heat transfer with micro-hotplates.
    Marconot O; Juneau-Fecteau A; Fréchette LG
    Sci Rep; 2021 Jul; 11(1):14347. PubMed ID: 34253793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Field Thermal Radiation between Two Plates with Sub-10 nm Vacuum Separation.
    Salihoglu H; Nam W; Traverso L; Segovia M; Venuthurumilli PK; Liu W; Wei Y; Li W; Xu X
    Nano Lett; 2020 Aug; 20(8):6091-6096. PubMed ID: 32628493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning near field radiative heat flux through surface excitations with a metal insulator transition.
    van Zwol PJ; Ranno L; Chevrier J
    Phys Rev Lett; 2012 Jun; 108(23):234301. PubMed ID: 23003960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.