These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 29702149)
1. The link between bone microenvironment and immune cells in multiple myeloma: Emerging role of CD38. Bolzoni M; Toscani D; Costa F; Vicario E; Aversa F; Giuliani N Immunol Lett; 2019 Jan; 205():65-70. PubMed ID: 29702149 [TBL] [Abstract][Full Text] [Related]
2. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. An G; Acharya C; Feng X; Wen K; Zhong M; Zhang L; Munshi NC; Qiu L; Tai YT; Anderson KC Blood; 2016 Sep; 128(12):1590-603. PubMed ID: 27418644 [TBL] [Abstract][Full Text] [Related]
3. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. van de Donk NWCJ; Usmani SZ Front Immunol; 2018; 9():2134. PubMed ID: 30294326 [TBL] [Abstract][Full Text] [Related]
4. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Tai YT; Cho SF; Anderson KC Front Immunol; 2018; 9():1822. PubMed ID: 30147691 [TBL] [Abstract][Full Text] [Related]
5. The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Ogiya D; Liu J; Ohguchi H; Kurata K; Samur MK; Tai YT; Adamia S; Ando K; Hideshima T; Anderson KC Blood; 2020 Nov; 136(20):2334-2345. PubMed ID: 32844992 [TBL] [Abstract][Full Text] [Related]
6. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights From Basic Science to Therapy. Horenstein AL; Bracci C; Morandi F; Malavasi F Front Immunol; 2019; 10():760. PubMed ID: 31068926 [TBL] [Abstract][Full Text] [Related]
7. CD38 Expression by Myeloma Cells and Its Role in the Context of Bone Marrow Microenvironment: Modulation by Therapeutic Agents. Costa F; Dalla Palma B; Giuliani N Cells; 2019 Dec; 8(12):. PubMed ID: 31847204 [TBL] [Abstract][Full Text] [Related]
8. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Drent E; Groen RW; Noort WA; Themeli M; Lammerts van Bueren JJ; Parren PW; Kuball J; Sebestyen Z; Yuan H; de Bruijn J; van de Donk NW; Martens AC; Lokhorst HM; Mutis T Haematologica; 2016 May; 101(5):616-25. PubMed ID: 26858358 [TBL] [Abstract][Full Text] [Related]
9. Novel Insights in Anti-CD38 Therapy Based on CD38-Receptor Expression and Function: The Multiple Myeloma Model. Zannetti BA; Faini AC; Massari E; Geuna M; Maffini E; Poletti G; Cerchione C; Martinelli G; Malavasi F; Lanza F Cells; 2020 Dec; 9(12):. PubMed ID: 33322499 [TBL] [Abstract][Full Text] [Related]
10. CD38: targeted therapy in multiple myeloma and therapeutic potential for solid cancers. Jiao Y; Yi M; Xu L; Chu Q; Yan Y; Luo S; Wu K Expert Opin Investig Drugs; 2020 Nov; 29(11):1295-1308. PubMed ID: 32822558 [TBL] [Abstract][Full Text] [Related]
11. CD38 as an immunotherapeutic target in multiple myeloma. Bonello F; D'Agostino M; Moscvin M; Cerrato C; Boccadoro M; Gay F Expert Opin Biol Ther; 2018 Dec; 18(12):1209-1221. PubMed ID: 30394809 [TBL] [Abstract][Full Text] [Related]
12. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy. Chung C Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103 [TBL] [Abstract][Full Text] [Related]
13. CD38 and Anti-CD38 Monoclonal Antibodies in AL Amyloidosis: Targeting Plasma Cells and beyond. Roccatello D; Fenoglio R; Sciascia S; Naretto C; Rossi D; Ferro M; Barreca A; Malavasi F; Baldovino S Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32531894 [TBL] [Abstract][Full Text] [Related]
14. Daratumumab augments alloreactive natural killer cell cytotoxicity towards CD38+ multiple myeloma cell lines in a biochemical context mimicking tumour microenvironment conditions. Mahaweni NM; Bos GMJ; Mitsiades CS; Tilanus MGJ; Wieten L Cancer Immunol Immunother; 2018 Jun; 67(6):861-872. PubMed ID: 29500635 [TBL] [Abstract][Full Text] [Related]
15. Multiple myeloma with t(11;14)-associated immature phenotype has lower CD38 expression and higher BCL2 dependence. Kitadate A; Terao T; Narita K; Ikeda S; Takahashi Y; Tsushima T; Miura D; Takeuchi M; Takahashi N; Matsue K Cancer Sci; 2021 Sep; 112(9):3645-3654. PubMed ID: 34288263 [TBL] [Abstract][Full Text] [Related]
16. Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. Raimondo S; Saieva L; Vicario E; Pucci M; Toscani D; Manno M; Raccosta S; Giuliani N; Alessandro R J Hematol Oncol; 2019 Jan; 12(1):2. PubMed ID: 30621731 [TBL] [Abstract][Full Text] [Related]
17. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma. Podar K; Jager D Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977 [TBL] [Abstract][Full Text] [Related]
18. Immunomodulatory effects of CD38-targeting antibodies. van de Donk NWCJ Immunol Lett; 2018 Jul; 199():16-22. PubMed ID: 29702148 [TBL] [Abstract][Full Text] [Related]
19. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Bisht K; Fukao T; Chiron M; Richardson P; Atanackovic D; Chini E; Chng WJ; Van De Velde H; Malavasi F Cancer Med; 2023 Oct; 12(20):20332-20352. PubMed ID: 37840445 [TBL] [Abstract][Full Text] [Related]
20. Fratricide of NK Cells in Daratumumab Therapy for Multiple Myeloma Overcome by Wang Y; Zhang Y; Hughes T; Zhang J; Caligiuri MA; Benson DM; Yu J Clin Cancer Res; 2018 Aug; 24(16):4006-4017. PubMed ID: 29666301 [No Abstract] [Full Text] [Related] [Next] [New Search]