BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 29702184)

  • 1. Multisensory vestibular, vestibular-auditory, and auditory network effects revealed by parametric sound pressure stimulation.
    Oh SY; Boegle R; Ertl M; Stephan T; Dieterich M
    Neuroimage; 2018 Aug; 176():354-363. PubMed ID: 29702184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Handedness-dependent functional organizational patterns within the bilateral vestibular cortical network revealed by fMRI connectivity based parcellation.
    Kirsch V; Boegle R; Keeser D; Kierig E; Ertl-Wagner B; Brandt T; Dieterich M
    Neuroimage; 2018 Sep; 178():224-237. PubMed ID: 29787866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of 64-channel electroencephalography to study neural otolith-evoked responses.
    McNerney KM; Lockwood AH; Coad ML; Wack DS; Burkard RF
    J Am Acad Audiol; 2011 Mar; 22(3):143-55. PubMed ID: 21545767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cortical spatiotemporal correlate of otolith stimulation: Vestibular evoked potentials by body translations.
    Ertl M; Moser M; Boegle R; Conrad J; Zu Eulenburg P; Dieterich M
    Neuroimage; 2017 Jul; 155():50-59. PubMed ID: 28254458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocular and cervical vestibular evoked myogenic potentials elicited by air-conducted, low-frequency sound.
    Luecke VN; Buchwieser L; Zu Eulenburg P; Marquardt T; Drexl M
    J Vestib Res; 2020; 30(4):235-247. PubMed ID: 32925129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Input-output functions of vestibular afferent responses to air-conducted clicks in rats.
    Zhu H; Tang X; Wei W; Maklad A; Mustain W; Rabbitt R; Highstein S; Allison J; Zhou W
    J Assoc Res Otolaryngol; 2014 Feb; 15(1):73-86. PubMed ID: 24297262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system.
    Janzen J; Schlindwein P; Bense S; Bauermann T; Vucurevic G; Stoeter P; Dieterich M
    Neuroimage; 2008 Oct; 42(4):1508-18. PubMed ID: 18644454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccular projections in the human cerebral cortex.
    Miyamoto T; Fukushima K; Takada T; De Waele C; Vidal PP
    Ann N Y Acad Sci; 2005 Apr; 1039():124-31. PubMed ID: 15826967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source analysis of short and long latency vestibular-evoked potentials (VsEPs) produced by left vs. right ear air-conducted 500 Hz tone pips.
    Todd NP; Paillard AC; Kluk K; Whittle E; Colebatch JG
    Hear Res; 2014 Jun; 312(100):91-102. PubMed ID: 24699384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does high-frequency sound or vibration activate vestibular receptors?
    Curthoys IS; Grant JW
    Exp Brain Res; 2015 Mar; 233(3):691-9. PubMed ID: 25567092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats.
    Huang J; Tang X; Xu Y; Zhang C; Chen T; Yu Y; Mustain W; Allison J; Iversen MM; Rabbitt RD; Zhou W; Zhu H
    J Assoc Res Otolaryngol; 2022 Jun; 23(3):435-453. PubMed ID: 35378621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs).
    Weber KP; Rosengren SM
    Curr Neurol Neurosci Rep; 2015 May; 15(5):22. PubMed ID: 25773001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
    Curthoys IS; Kim J; McPhedran SK; Camp AJ
    Exp Brain Res; 2006 Nov; 175(2):256-67. PubMed ID: 16761136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular-dependent inter-stimulus interval effects on sound evoked potentials of central origin.
    Todd NPM; Govender S; Colebatch JG
    Hear Res; 2016 Nov; 341():190-201. PubMed ID: 27498399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory induced vestibular (otolithic) processing revealed by an independent component analysis: an fMRI parametric analysis.
    Oh SY; Boegle R; Ertl M; Eulenburg PZ; Stephan T; Dieterich M
    J Neurol; 2017 Oct; 264(Suppl 1):23-25. PubMed ID: 28271405
    [No Abstract]   [Full Text] [Related]  

  • 16. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI).
    Bense S; Stephan T; Yousry TA; Brandt T; Dieterich M
    J Neurophysiol; 2001 Feb; 85(2):886-99. PubMed ID: 11160520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of endolymphatic hydrops and otolith function in patients with Ménière's disease.
    Okumura T; Imai T; Takimoto Y; Takeda N; Kitahara T; Uno A; Kamakura T; Osaki Y; Watanabe Y; Inohara H
    Eur Arch Otorhinolaryngol; 2017 Mar; 274(3):1413-1421. PubMed ID: 27942898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ageing-related changes in the cortical processing of otolith information in humans.
    Zu Eulenburg P; Ruehl RM; Runge P; Dieterich M
    Eur J Neurosci; 2017 Dec; 46(12):2817-2825. PubMed ID: 29057523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
    Curthoys IS; Vulovic V; Burgess AM; Manzari L; Sokolic L; Pogson J; Robins M; Mezey LE; Goonetilleke S; Cornell ED; MacDougall HG
    Clin Exp Pharmacol Physiol; 2014 May; 41(5):371-80. PubMed ID: 24754528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral fingerprints of correct vestibular discrimination of the intensity of body accelerations.
    Ertl M; Klaus M; Mast FW; Brandt T; Dieterich M
    Neuroimage; 2020 Oct; 219():117015. PubMed ID: 32505699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.