These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29702325)

  • 1. Amorphous tantalum oxyhydroxide homojunction: In situ construction for enhanced hydrogen production.
    Zhang N; Li G; Xie T; Li L
    J Colloid Interface Sci; 2018 Sep; 525():196-205. PubMed ID: 29702325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ synthesis of amorphous H
    Wang P; Yi X; Lu Y; Yu H; Yu J
    J Colloid Interface Sci; 2018 Dec; 532():272-279. PubMed ID: 30092509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Photocatalysts for Hydrogen Evolution: Are Complex Preparation Strategies Necessary to Produce Active Catalysts?
    Grewe T; Tüysüz H
    ChemSusChem; 2015 Sep; 8(18):3084-91. PubMed ID: 26261010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesis of novel Cu
    Xu H; Dai D; Li S; Ge L; Gao Y
    Dalton Trans; 2018 Jan; 47(2):348-356. PubMed ID: 29215106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks.
    Ye B; Han X; Yan M; Zhang H; Xi F; Dong X; Liu J
    J Colloid Interface Sci; 2017 Dec; 507():209-216. PubMed ID: 28797754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bare Cd1-xZnxS ZB/WZ Heterophase Nanojunctions for Visible Light Photocatalytic Hydrogen Production with High Efficiency.
    Du H; Liang K; Yuan CZ; Guo HL; Zhou X; Jiang YF; Xu AW
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24550-8. PubMed ID: 27598838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of layer-like Ni(OH)
    Li S; Dai D; Ge L; Gao Y; Han C; Xiao N
    Dalton Trans; 2017 Aug; 46(32):10620-10629. PubMed ID: 28401230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Control of Oxygen Vacancies in TaO
    Egorov KV; Kuzmichev DS; Chizhov PS; Lebedinskii YY; Hwang CS; Markeev AM
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13286-13292. PubMed ID: 28350159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amorphous Co₃O₄ modified CdS nanorods with enhanced visible-light photocatalytic H₂-production activity.
    Yuan J; Wen J; Gao Q; Chen S; Li J; Li X; Fang Y
    Dalton Trans; 2015 Jan; 44(4):1680-9. PubMed ID: 25438161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets: a visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants.
    Liu H; Jin Z; Xu Z
    Dalton Trans; 2015 Aug; 44(32):14368-75. PubMed ID: 26200067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification induced construction of core-shell homojunction of polymeric carbon nitride for boosted photocatalytic performance.
    Yang F; Ba G; Wang Z; Li H
    J Colloid Interface Sci; 2021 Jul; 594():64-72. PubMed ID: 33756369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic hydrogen production over CuO-modified titania.
    Yu J; Hai Y; Jaroniec M
    J Colloid Interface Sci; 2011 May; 357(1):223-8. PubMed ID: 21345445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of photocatalytic H2 evolution on Zn(0.8)Cd(0.2)S loaded with CuS as cocatalyst and its photogenerated charge transfer properties.
    Zhang L; Jiang T; Li S; Lu Y; Wang L; Zhang X; Wang D; Xie T
    Dalton Trans; 2013 Sep; 42(36):12998-3003. PubMed ID: 23868028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous and Crystalline Sodium Tantalate Composites for Photocatalytic Water Splitting.
    Grewe T; Tüysüz H
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23153-62. PubMed ID: 26439706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photocatalytic H₂ generation on cadmium sulfide nanorods with cobalt hydroxide as cocatalyst and insights into their photogenerated charge transfer properties.
    Zhang LJ; Zheng R; Li S; Liu BK; Wang de J; Wang LL; Xie TF
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13406-12. PubMed ID: 25105856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing an efficient NiCo
    Peng J; Xu J; Wang Z; Ding Z; Wang S
    Phys Chem Chem Phys; 2017 Oct; 19(38):25919-25926. PubMed ID: 28929150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amorphous Fe(OH)
    Feng T; Ding J; Li H; Wang W; Dong B; Cao L
    ChemSusChem; 2021 Aug; 14(16):3382-3390. PubMed ID: 34227731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a Co(OH)
    Sahoo DP; Nayak S; Reddy KH; Martha S; Parida K
    Inorg Chem; 2018 Apr; 57(7):3840-3854. PubMed ID: 29528221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution.
    Zhong Y; Yuan J; Wen J; Li X; Xu Y; Liu W; Zhang S; Fang Y
    Dalton Trans; 2015 Nov; 44(41):18260-9. PubMed ID: 26426584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile in situ approach to fabricate N,S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution.
    Pany S; Parida KM
    Phys Chem Chem Phys; 2015 Mar; 17(12):8070-7. PubMed ID: 25729789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.