These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 29702431)

  • 1. Short-chain fatty acids suppress food intake by activating vagal afferent neurons.
    Goswami C; Iwasaki Y; Yada T
    J Nutr Biochem; 2018 Jul; 57():130-135. PubMed ID: 29702431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.
    Iwasaki Y; Maejima Y; Suyama S; Yoshida M; Arai T; Katsurada K; Kumari P; Nakabayashi H; Kakei M; Yada T
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R360-9. PubMed ID: 25540101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucagon directly interacts with vagal afferent nodose ganglion neurons to induce Ca(2+) signaling via glucagon receptors.
    Ayush EA; Iwasaki Y; Iwamoto S; Nakabayashi H; Kakei M; Yada T
    Biochem Biophys Res Commun; 2015 Jan; 456(3):727-32. PubMed ID: 25511693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pancreatic polypeptide and peptide YY3-36 induce Ca2+ signaling in nodose ganglion neurons.
    Iwasaki Y; Kakei M; Nakabayashi H; Ayush EA; Hirano-Kodaira M; Maejima Y; Yada T
    Neuropeptides; 2013 Feb; 47(1):19-23. PubMed ID: 22944736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nesfatin-1 evokes Ca2+ signaling in isolated vagal afferent neurons via Ca2+ influx through N-type channels.
    Iwasaki Y; Nakabayashi H; Kakei M; Shimizu H; Mori M; Yada T
    Biochem Biophys Res Commun; 2009 Dec; 390(3):958-62. PubMed ID: 19852938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats.
    Shen L; Wang DQ; Lo CC; Arnold M; Tso P; Woods SC; Liu M
    Physiol Behav; 2015 Dec; 152(Pt A):62-7. PubMed ID: 26384952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies.
    Li Y; Wu X; Yao H; Owyang C
    Am J Physiol Gastrointest Liver Physiol; 2005 Oct; 289(4):G745-52. PubMed ID: 15920018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CART in the dorsal vagal complex: sources of immunoreactivity and effects on Fos expression and food intake.
    Zheng H; Patterson LM; Berthoud HR
    Brain Res; 2002 Dec; 957(2):298-310. PubMed ID: 12445972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vagal afferents are necessary for the establishment but not the maintenance of kainic acid-induced hyperalgesia in mice.
    Tien D; Ohara PT; Larson AA; Jasmin L
    Pain; 2003 Mar; 102(1-2):39-49. PubMed ID: 12620595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central vagal afferent endings mediate reduction of food intake by melanocortin-3/4 receptor agonist.
    Campos CA; Shiina H; Ritter RC
    J Neurosci; 2014 Sep; 34(38):12636-45. PubMed ID: 25232103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circulating GLP-1 and CCK-8 reduce food intake by capsaicin-insensitive, nonvagal mechanisms.
    Zhang J; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2012 Jan; 302(2):R264-73. PubMed ID: 22031786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ketamine differentially blocks sensory afferent synaptic transmission in medial nucleus tractus solitarius (mNTS).
    Jin YH; Bailey TW; Doyle MW; Li BY; Chang KS; Schild JH; Mendelowitz D; Andresen MC
    Anesthesiology; 2003 Jan; 98(1):121-32. PubMed ID: 12502988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capsaicin-sensitive afferent vagal neurons innervating the rat liver.
    Carobi C; Magni F
    Neurosci Lett; 1985 Dec; 62(2):261-5. PubMed ID: 4088535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1.
    Wang X; Miyares RL; Ahern GP
    J Physiol; 2005 Apr; 564(Pt 2):541-7. PubMed ID: 15695242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat.
    Nelson DW; Sharp JW; Brownfield MS; Raybould HE; Ney DM
    Endocrinology; 2007 May; 148(5):1954-62. PubMed ID: 17234710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice.
    Yu Y; Park SJ; Beyak MJ
    J Physiol; 2019 Mar; 597(6):1487-1502. PubMed ID: 30565225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of nodose ganglion neurons after capsaicin- and vagotomy-induced nerve damage in adult rats.
    Ryu V; Gallaher Z; Czaja K
    Neuroscience; 2010 Jun; 167(4):1227-38. PubMed ID: 20197082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats.
    Date Y; Murakami N; Toshinai K; Matsukura S; Niijima A; Matsuo H; Kangawa K; Nakazato M
    Gastroenterology; 2002 Oct; 123(4):1120-8. PubMed ID: 12360474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraperitoneal injections of low doses of C75 elicit a behaviorally specific and vagal afferent-independent inhibition of eating in rats.
    Mansouri A; Aja S; Moran TH; Ronnett G; Kuhajda FP; Arnold M; Geary N; Langhans W; Leonhardt M
    Am J Physiol Regul Integr Comp Physiol; 2008 Sep; 295(3):R799-805. PubMed ID: 18667714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.