These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29703212)

  • 1. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide.
    Xiao G; Chen H; Krasteva N; Liu Q; Wang D
    J Nanobiotechnology; 2018 Apr; 16(1):45. PubMed ID: 29703212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans.
    Chen H; Li H; Wang D
    Sci Rep; 2017 Jan; 7():41655. PubMed ID: 28128356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans.
    Zhao Y; Chen H; Yang Y; Wu Q; Wang D
    Sci Total Environ; 2020 Jan; 700():134492. PubMed ID: 31627046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans.
    Ding X; Wang J; Rui Q; Wang D
    Sci Total Environ; 2018 Mar; 616-617():29-37. PubMed ID: 29107776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans.
    Qu M; Li Y; Wu Q; Xia Y; Wang D
    Nanotoxicology; 2017 May; 11(4):520-533. PubMed ID: 28368775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans.
    Zhao Y; Zhi L; Wu Q; Yu Y; Sun Q; Wang D
    Nanotoxicology; 2016 Dec; 10(10):1469-1479. PubMed ID: 27615004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide.
    Wu Q; Zhou X; Han X; Zhuo Y; Zhu S; Zhao Y; Wang D
    Biomaterials; 2016 Sep; 102():277-91. PubMed ID: 27348851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired Dopamine-Dependent Locomotory Behavior of C. elegans Neuroligin Mutants Depends on the Catechol-O-Methyltransferase COMT-4.
    Rodríguez-Ramos Á; Gámez-Del-Estal MM; Porta-de-la-Riva M; Cerón J; Ruiz-Rubio M
    Behav Genet; 2017 Nov; 47(6):596-608. PubMed ID: 28879499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans.
    Tsalik EL; Hobert O
    J Neurobiol; 2003 Aug; 56(2):178-97. PubMed ID: 12838583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans.
    Wu Q; Yin L; Li X; Tang M; Zhang T; Wang D
    Nanoscale; 2013 Oct; 5(20):9934-43. PubMed ID: 23986404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide.
    Ding X; Rui Q; Wang D
    Ecotoxicol Environ Saf; 2018 Nov; 163():456-464. PubMed ID: 30075448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans.
    Wu Q; Zhao Y; Li Y; Wang D
    Nanoscale; 2014 Oct; 6(19):11204-12. PubMed ID: 25124895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt Ligands Differentially Regulate Toxicity and Translocation of Graphene Oxide through Different Mechanisms in Caenorhabditis elegans.
    Zhi L; Ren M; Qu M; Zhang H; Wang D
    Sci Rep; 2016 Dec; 6():39261. PubMed ID: 27958363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans.
    Wu Q; Zhao Y; Zhao G; Wang D
    Nanomedicine; 2014 Oct; 10(7):1401-10. PubMed ID: 24780312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans.
    Ren M; Zhao L; Lv X; Wang D
    Nanotoxicology; 2017 May; 11(4):578-590. PubMed ID: 28490217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans.
    Kim M; Eom HJ; Choi I; Hong J; Choi J
    Neurotoxicology; 2020 Mar; 77():30-39. PubMed ID: 31862286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans.
    Liu P; Shao H; Kong Y; Wang D
    J Environ Sci (China); 2020 Feb; 88():200-208. PubMed ID: 31862061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of C. elegans.
    Izquierdo PG; Calahorro F; Ruiz-Rubio M
    Neurogenetics; 2013 Nov; 14(3-4):233-42. PubMed ID: 24100941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.
    Zhao Y; Wu Q; Wang D
    Biomaterials; 2016 Feb; 79():15-24. PubMed ID: 26686978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).
    Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J
    Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.