These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29703251)

  • 1. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach.
    Berndt R; Hummitzsch L; Heß K; Albrecht M; Zitta K; Rusch R; Sarras B; Bayer A; Cremer J; Faendrich F; Groß J
    Stem Cell Res Ther; 2018 Apr; 9(1):117. PubMed ID: 29703251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy.
    Nammian P; Asadi-Yousefabad SL; Daneshi S; Sheikhha MH; Tabei SMB; Razban V
    Stem Cell Res Ther; 2021 Jan; 12(1):58. PubMed ID: 33436054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies.
    Qadura M; Terenzi DC; Verma S; Al-Omran M; Hess DA
    Stem Cells; 2018 Feb; 36(2):161-171. PubMed ID: 29226477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The programmable cell of monocytic origin (PCMO): a potential adult stem/progenitor cell source for the generation of islet cells.
    Ungefroren H; Fändrich F
    Adv Exp Med Biol; 2010; 654():667-82. PubMed ID: 20217519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammation is associated with a reduced number of pro-angiogenic Tie-2 monocytes and endothelial progenitor cells in patients with critical limb ischemia.
    Dopheide JF; Geissler P; Rubrech J; Trumpp A; Zeller GC; Bock K; Dorweiler B; Dünschede F; Münzel T; Radsak MP; Espinola-Klein C
    Angiogenesis; 2016 Jan; 19(1):67-78. PubMed ID: 26462497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β.
    Ungefroren H; Hyder A; Hinz H; Groth S; Lange H; El-Sayed KM; Ehnert S; Nüssler AK; Fändrich F; Gieseler F
    PLoS One; 2015; 10(2):e0118097. PubMed ID: 25707005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic angiogenesis using zinc oxide nanoflowers for the treatment of hind limb ischemia in a rat model.
    Barui AK; Nethi SK; Basuthakur P; Jhelum P; Bollu VS; Reddy BR; Chakravarty S; Patra CR
    Biomed Mater; 2021 Mar; 16(4):. PubMed ID: 33657534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia.
    Ryu JC; Davidson BP; Xie A; Qi Y; Zha D; Belcik JT; Caplan ES; Woda JM; Hedrick CC; Hanna RN; Lehman N; Zhao Y; Ting A; Lindner JR
    Circulation; 2013 Feb; 127(6):710-9. PubMed ID: 23307829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell therapy in critical limb ischemia: A comprehensive analysis of two cell therapy products.
    Tournois C; Pignon B; Sevestre MA; Al-Rifai R; Creuza V; Poitevin G; François C; Nguyen P
    Cytotherapy; 2017 Feb; 19(2):299-310. PubMed ID: 27914820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beneficial effects of VEGF secreted from stromal cells in supporting endothelial cell functions: therapeutic implications for critical limb ischemia.
    Cobellis G; Maione C; Botti C; Coppola A; Silvestroni A; Lillo S; Schiavone V; Molinari AM; Sica V
    Cell Transplant; 2010; 19(11):1425-37. PubMed ID: 20587143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia.
    Tu C; Das S; Baker AB; Zoldan J; Suggs LJ
    ACS Nano; 2015; 9(4):3436-52. PubMed ID: 25844518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic potential of ixmyelocel-T, an expanded autologous multicellular therapy for treatment of ischemic cardiovascular diseases.
    Ledford KJ; Murphy N; Zeigler F; Bartel RL; Tubo R
    Stem Cell Res Ther; 2015 Mar; 6(1):25. PubMed ID: 25889271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-cell-pre-stimulated monocytes promote neovascularisation in a murine hind limb ischaemia model.
    Hellingman AA; Zwaginga JJ; van Beem RT; ; Hamming JF; Fibbe WE; Quax PH; Geutskens SB
    Eur J Vasc Endovasc Surg; 2011 Mar; 41(3):418-28. PubMed ID: 21193337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral Blood Monocytes as Adult Stem Cells: Molecular Characterization and Improvements in Culture Conditions to Enhance Stem Cell Features and Proliferative Potential.
    Ungefroren H; Hyder A; Schulze M; Fawzy El-Sayed KM; Grage-Griebenow E; Nussler AK; Fändrich F
    Stem Cells Int; 2016; 2016():7132751. PubMed ID: 26798361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Stem Cells Overexpressing miR-21 Promote Angiogenesis in Critical Limb Ischemia by Targeting CHIP to Enhance HIF-1α Activity.
    Zhou Y; Zhu Y; Zhang L; Wu T; Wu T; Zhang W; Decker AM; He J; Liu J; Wu Y; Jiang X; Zhang Z; Liang C; Zou D
    Stem Cells; 2016 Apr; 34(4):924-34. PubMed ID: 26841045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-cultures of programmable cells of monocytic origin and mesenchymal stem cells do increase osteogenic differentiation.
    Zachos C; Steubesand N; Seekamp A; Fuchs S; Lippross S
    J Orthop Res; 2014 Oct; 32(10):1264-70. PubMed ID: 24961926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sourcing of human peripheral blood-derived myeloid angiogenic cells under xeno-free conditions for the treatment of critical limb ischemia.
    Wong CWT; Sawhney A; Wu Y; Mak YW; Tian XY; Chan HF; Blocki A
    Stem Cell Res Ther; 2022 Aug; 13(1):419. PubMed ID: 35964057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Administered circulating microparticles derived from lung cancer patients markedly improved angiogenesis, blood flow and ischemic recovery in rat critical limb ischemia.
    Sheu JJ; Lee FY; Wallace CG; Tsai TH; Leu S; Chen YL; Chai HT; Lu HI; Sun CK; Yip HK
    J Transl Med; 2015 Feb; 13():59. PubMed ID: 25889721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization.
    Tateno K; Minamino T; Toko H; Akazawa H; Shimizu N; Takeda S; Kunieda T; Miyauchi H; Oyama T; Matsuura K; Nishi J; Kobayashi Y; Nagai T; Kuwabara Y; Iwakura Y; Nomura F; Saito Y; Komuro I
    Circ Res; 2006 May; 98(9):1194-202. PubMed ID: 16574905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment of endothelial progenitor cells with osteopontin enhances cell therapy for peripheral vascular disease.
    Vaughan EE; Liew A; Mashayekhi K; Dockery P; McDermott J; Kealy B; Flynn A; Duffy A; Coleman C; O'Regan A; Barry FP; O'Brien T
    Cell Transplant; 2012; 21(6):1095-107. PubMed ID: 22304991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.