These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29703427)

  • 21. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extent of bioleaching and bioavailability reduction of potentially toxic heavy metals from sewage sludge through pH-controlled fermentation.
    Yesil H; Molaey R; Calli B; Tugtas AE
    Water Res; 2021 Aug; 201():117303. PubMed ID: 34116292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation of heavy metal forms during sewage sludge bioleaching.
    Chen YX; Hua YM; Zhang SH; Tian GM
    J Hazard Mater; 2005 Aug; 123(1-3):196-202. PubMed ID: 15905024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM).
    Tian B; Cui Y; Qin Z; Wen L; Li Z; Chu H; Xin B
    J Environ Manage; 2022 Jun; 312():114927. PubMed ID: 35358844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of phase separation on dewaterability promotion and heavy metal removal of sewage sludge during bioleaching.
    Lu Y; Wu R; Zhang J; Liu H; Dai Y
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):13971-13982. PubMed ID: 34599453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of Fe2 +/solids content ratio for a novel sludge heavy metal bioleaching process.
    Wong JW; Gu XY
    Water Sci Technol; 2008; 57(3):445-50. PubMed ID: 18309225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An evaluation into the potential of biological processing for the removal of metals from sewage sludges.
    Lombardi AT; Garcia Júnior O
    Crit Rev Microbiol; 1999; 25(4):275-88. PubMed ID: 10642888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioleaching of metals from sludges and acid production under increased metal concentrations.
    Bickers PO; Chong RC; Bhamidimarri R; Killick MG
    Water Sci Technol; 2003; 48(8):169-76. PubMed ID: 14682584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of anaerobic sewage sludge quality for agricultural application after metal bioleaching.
    Villar LD; Garcia O
    Environ Technol; 2003 Dec; 24(12):1553-9. PubMed ID: 14977151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals].
    Yang J; Wang QH; Wang Q; Xue J; Tian SL
    Huan Jing Ke Xue; 2008 Mar; 29(3):825-30. PubMed ID: 18649552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of Thiobacilli on the leaching of heavy metal from solidified sludge].
    Li L; Zhu W; Lin C
    Huan Jing Ke Xue; 2006 Oct; 27(10):2105-9. PubMed ID: 17256619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The combination of aerobic digestion and bioleaching for heavy metal removal from excess sludge.
    Zhang X; Li J; Yang W; Chen J; Wang X; Xing D; Dong W; Wang H; Wang J
    Chemosphere; 2022 Mar; 290():133231. PubMed ID: 34902386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ammonium-based bioleaching of toxic metals from sewage sludge in a continuous bioreactor.
    Wang Z; Lu X; Zhang X; Yuan Z; Zheng M; Hu S
    Water Res; 2024 Jun; 256():121651. PubMed ID: 38657312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effects of sludge solids concentration.
    Chen SY; Lin JG
    Chemosphere; 2004 Jan; 54(3):283-9. PubMed ID: 14575740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.
    Funari V; Mäkinen J; Salminen J; Braga R; Dinelli E; Revitzer H
    Waste Manag; 2017 Feb; 60():397-406. PubMed ID: 27478021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic effect of biogenic Fe
    Panda S; Akcil A; Mishra S; Erust C
    J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.
    Alvarenga P; Mourinha C; Farto M; Santos T; Palma P; Sengo J; Morais MC; Cunha-Queda C
    Waste Manag; 2015 Jun; 40():44-52. PubMed ID: 25708406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: effects of ratio of substrate dosage to solid content.
    Zhang P; Zhu Y; Zhang G; Zou S; Zeng G; Wu Z
    Bioresour Technol; 2009 Feb; 100(3):1394-8. PubMed ID: 18945613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].
    Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.
    Pathak A; Dastidar MG; Sreekrishnan TR
    J Hazard Mater; 2009 Nov; 171(1-3):273-8. PubMed ID: 19586718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.