These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29703605)
41. Changes in handwriting resulting from bilateral high-frequency stimulation of the subthalamic nucleus in Parkinson's disease. Siebner HR; Ceballos-Baumann A; Standhardt H; Auer C; Conrad B; Alesch F Mov Disord; 1999 Nov; 14(6):964-71. PubMed ID: 10584671 [TBL] [Abstract][Full Text] [Related]
42. Computerized assessment of handwriting in de novo Parkinson's disease: A kinematic study. Diaz-Feliz L; Sanz-Cartagena P; Faundez-Zanuy M; Arbelo-Gonzalez J; Garcia-Ruiz P Parkinsonism Relat Disord; 2024 Sep; 126():107072. PubMed ID: 39094212 [TBL] [Abstract][Full Text] [Related]
43. Validity and reliability of a new tool to evaluate handwriting difficulties in Parkinson's disease. Nackaerts E; Heremans E; Smits-Engelsman BC; Broeder S; Vandenberghe W; Bergmans B; Nieuwboer A PLoS One; 2017; 12(3):e0173157. PubMed ID: 28253374 [TBL] [Abstract][Full Text] [Related]
44. Biased wrist and finger coordination in Parkinsonian patients during performance of graphical tasks. Dounskaia N; Van Gemmert AW; Leis BC; Stelmach GE Neuropsychologia; 2009 Oct; 47(12):2504-14. PubMed ID: 19410590 [TBL] [Abstract][Full Text] [Related]
45. The elaboration of motor programs for the automation of letter production. Thibon LS; Gerber S; Kandel S Acta Psychol (Amst); 2018 Jan; 182():200-211. PubMed ID: 29229183 [TBL] [Abstract][Full Text] [Related]
46. Analysis and evaluation of handwriting in patients with Parkinson's disease using kinematic, geometrical, and non-linear features. Rios-Urrego CD; Vásquez-Correa JC; Vargas-Bonilla JF; Nöth E; Lopera F; Orozco-Arroyave JR Comput Methods Programs Biomed; 2019 May; 173():43-52. PubMed ID: 31046995 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease. Drotár P; Mekyska J; Rektorová I; Masarová L; Smékal Z; Faundez-Zanuy M Artif Intell Med; 2016 Feb; 67():39-46. PubMed ID: 26874552 [TBL] [Abstract][Full Text] [Related]
49. Learning to write letters: transfer in automated movements indicates modularity of motor programs in human subjects. Kharraz-Tavakol OD; Eggert T; Mai N; Straube A Neurosci Lett; 2000 Mar; 282(1-2):33-6. PubMed ID: 10713389 [TBL] [Abstract][Full Text] [Related]
50. A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Grossberg S; Paine RW Neural Netw; 2000; 13(8-9):999-1046. PubMed ID: 11156206 [TBL] [Abstract][Full Text] [Related]
51. Signal-to-noise velocity peaks difference: a new method for evaluating the handwriting movement fluency in children with dysgraphia. Danna J; Paz-Villagrán V; Velay JL Res Dev Disabil; 2013 Dec; 34(12):4375-84. PubMed ID: 24139714 [TBL] [Abstract][Full Text] [Related]
52. Planning and executing an action in Parkinson's disease. Gentilucci M; Negrotti A Mov Disord; 1999 Jan; 14(1):69-79. PubMed ID: 9918347 [TBL] [Abstract][Full Text] [Related]
53. Reduced striatal dopamine release during motor skill acquisition in Parkinson's disease. Kawashima S; Ueki Y; Kato T; Ito K; Matsukawa N PLoS One; 2018; 13(5):e0196661. PubMed ID: 29847548 [TBL] [Abstract][Full Text] [Related]
54. [Predictive ocular motor control in Parkinson's disease]. Ying L; Liu ZG; Chen W; Gan J; Wang WA Zhonghua Yi Xue Za Zhi; 2008 Feb; 88(7):442-4. PubMed ID: 18642781 [TBL] [Abstract][Full Text] [Related]
55. A New Approach to Diagnose Parkinson's Disease Using a Structural Cooccurrence Matrix for a Similarity Analysis. de Souza JWM; Alves SSA; Rebouças ES; Almeida JS; Rebouças Filho PP Comput Intell Neurosci; 2018; 2018():7613282. PubMed ID: 29853835 [TBL] [Abstract][Full Text] [Related]
56. Parkinson's disease patients undershoot target size in handwriting and similar tasks. Van Gemmert AW; Adler CH; Stelmach GE J Neurol Neurosurg Psychiatry; 2003 Nov; 74(11):1502-8. PubMed ID: 14617705 [TBL] [Abstract][Full Text] [Related]
57. A Novel Computer Vision Approach to Kinematic Analysis of Handwriting with Implications for Assessing Neurodegenerative Diseases. Nachum R; Jackson K; Duric Z; Gerber L Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1309-1313. PubMed ID: 34891526 [TBL] [Abstract][Full Text] [Related]
58. Motor constancy and the upsizing of handwriting. Phillips JG; Ogeil RP; Best C Hum Mov Sci; 2009 Oct; 28(5):578-87. PubMed ID: 19665812 [TBL] [Abstract][Full Text] [Related]
59. Training children aged 5-10 years in manual compliance control to improve drawing and handwriting. Bingham GP; Snapp-Childs W Hum Mov Sci; 2019 Jun; 65():. PubMed ID: 29656792 [TBL] [Abstract][Full Text] [Related]
60. Dynamic Handwriting Analysis for the Assessment of Neurodegenerative Diseases: A Pattern Recognition Perspective. Impedovo D; Pirlo G IEEE Rev Biomed Eng; 2019; 12():209-220. PubMed ID: 29993722 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]