BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 29704055)

  • 1. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots.
    Bai Z; Li W; Jia Y; Yue Z; Jiao J; Huang W; Xia P; Liang Z
    Planta; 2018 Jul; 248(1):243-255. PubMed ID: 29704055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ethylene response factor SmERF8 regulates the expression of SmKSL1 and is involved in tanshinone biosynthesis in Saliva miltiorrhiza hairy roots.
    Bai Z; Wu J; Huang W; Jiao J; Zhang C; Hou Z; Yan K; Zhang X; Han R; Liang Z; Zhang X
    J Plant Physiol; 2020 Jan; 244():153006. PubMed ID: 31805420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza.
    Zhang Y; Ji A; Xu Z; Luo H; Song J
    Plant Mol Biol; 2019 May; 100(1-2):83-93. PubMed ID: 30847712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots.
    Deng C; Hao X; Shi M; Fu R; Wang Y; Zhang Y; Zhou W; Feng Y; Makunga NP; Kai G
    Plant Sci; 2019 Jul; 284():1-8. PubMed ID: 31084862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots.
    Zhang J; Zhou L; Zheng X; Zhang J; Yang L; Tan R; Zhao S
    Plant Cell Rep; 2017 Aug; 36(8):1297-1309. PubMed ID: 28508121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza.
    Zheng H; Jing L; Jiang X; Pu C; Zhao S; Yang J; Guo J; Cui G; Tang J; Ma Y; Yu M; Zhou X; Chen M; Lai C; Huang L; Shen Y
    New Phytol; 2021 Sep; 231(5):1940-1955. PubMed ID: 33983629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots.
    Ding K; Pei T; Bai Z; Jia Y; Ma P; Liang Z
    Sci Rep; 2017 Jul; 7(1):5104. PubMed ID: 28698552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The
    Li D; Liu Y; Chen G; Yan Y; Bai Z
    AoB Plants; 2024 Jan; 16(1):plad086. PubMed ID: 38249522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea.
    Zhang G; Sun Y; Ullah N; Kasote D; Zhu L; Liu H; Xu L
    Plant Physiol Biochem; 2024 Jun; 211():108671. PubMed ID: 38703500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and characterization of five SmGRAS genes associated with tanshinone biosynthesis in Salvia miltiorrhiza hairy roots.
    Bai Z; Xia P; Wang R; Jiao J; Ru M; Liu J; Liang Z
    PLoS One; 2017; 12(9):e0185322. PubMed ID: 28953930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots.
    Xing B; Liang L; Liu L; Hou Z; Yang D; Yan K; Zhang X; Liang Z
    Plant Cell Rep; 2018 Dec; 37(12):1681-1692. PubMed ID: 30229287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza.
    Huang Q; Sun M; Yuan T; Wang Y; Shi M; Lu S; Tang B; Pan J; Wang Y; Kai G
    Food Chem; 2019 Feb; 274():368-375. PubMed ID: 30372953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis, molecular cloning and expression profiling reveal tissue-specifically expressed, feedback-regulated, stress-responsive and alternatively spliced novel genes involved in gibberellin metabolism in Salvia miltiorrhiza.
    Du Q; Li C; Li D; Lu S
    BMC Genomics; 2015 Dec; 16():1087. PubMed ID: 26689421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in Salvia miltiorrhiza.
    Chang Y; Wang M; Li J; Lu S
    Sci Rep; 2019 Oct; 9(1):14929. PubMed ID: 31624328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots.
    Zheng X; Li H; Chen M; Zhang J; Tan R; Zhao S; Wang Z
    Plant Cell Rep; 2020 Oct; 39(10):1263-1283. PubMed ID: 32607753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SmbHLH3 acts as a transcription repressor for both phenolic acids and tanshinone biosynthesis in Salvia miltiorrhiza hairy roots.
    Zhang C; Xing B; Yang D; Ren M; Guo H; Yang S; Liang Z
    Phytochemistry; 2020 Jan; 169():112183. PubMed ID: 31704239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse responses of tanshinone biosynthesis to biotic and abiotic elicitors in hairy root cultures of Salvia miltiorrhiza and Salvia castanea Diels f. tomentosa.
    Yang D; Fang Y; Xia P; Zhang X; Liang Z
    Gene; 2018 Feb; 643():61-67. PubMed ID: 29196256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza.
    Sun M; Shi M; Wang Y; Huang Q; Yuan T; Wang Q; Wang C; Zhou W; Kai G
    J Exp Bot; 2019 Jan; 70(1):243-254. PubMed ID: 30299490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray.
    Cui G; Huang L; Tang X; Zhao J
    Mol Biol Rep; 2011 Apr; 38(4):2471-8. PubMed ID: 21082262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza.
    Shi M; Zhu R; Zhang Y; Zhang S; Liu T; Li K; Liu S; Wang L; Wang Y; Zhou W; Hua Q; Kai G
    Metab Eng; 2022 Sep; 73():182-191. PubMed ID: 35934177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.