BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29704497)

  • 1. Structural heterogeneity leads to functional homogeneity in A. marina phycocyanin.
    Bar-Zvi S; Lahav A; Harris D; Niedzwiedzki DM; Blankenship RE; Adir N
    Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):544-553. PubMed ID: 29704497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d.
    Marquardt J; Senger H; Miyashita H; Miyachi S; Mörschel E
    FEBS Lett; 1997 Jun; 410(2-3):428-32. PubMed ID: 9237676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina.
    Hu Q; Marquardt J; Iwasaki I; Miyashita H; Kurano N; Mörschel E; Miyachi S
    Biochim Biophys Acta; 1999 Aug; 1412(3):250-61. PubMed ID: 10482787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution crystal structures of trimeric and rod phycocyanin.
    David L; Marx A; Adir N
    J Mol Biol; 2011 Jan; 405(1):201-13. PubMed ID: 21035460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low absorption state of phycocyanin from Acaryochloris marina antenna system: on the interplay between ionic strength and excitonic coupling.
    Nganou C
    J Chem Phys; 2013 Jul; 139(4):045101. PubMed ID: 23902026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis.
    Padyana AK; Bhat VB; Madyastha KM; Rajashankar KR; Ramakumar S
    Biochem Biophys Res Commun; 2001 Apr; 282(4):893-8. PubMed ID: 11352634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod-core assembly.
    David L; Prado M; Arteni AA; Elmlund DA; Blankenship RE; Adir N
    Biochim Biophys Acta; 2014 Mar; 1837(3):385-95. PubMed ID: 24407142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization and preliminary X-ray diffraction analysis of the light-harvesting protein phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus.
    Toriumi Y; Park SY; Hashimoto H; Shimizu H; Hirano M; Kamiya N
    Acta Crystallogr D Biol Crystallogr; 2001 Sep; 57(Pt 9):1326-8. PubMed ID: 11526334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy.
    Gryliuk G; Rätsep M; Hildebrandt S; Irrgang KD; Eckert HJ; Pieper J
    Biochim Biophys Acta; 2014 Sep; 1837(9):1490-9. PubMed ID: 24560813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of phycocyanin from heterocyst-forming filamentous cyanobacterium Nostoc sp. WR13.
    Patel HM; Roszak AW; Madamwar D; Cogdell RJ
    Int J Biol Macromol; 2019 Aug; 135():62-68. PubMed ID: 31121226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of allophycocyanin from Thermosynechococcus elongatus at 3.5 A resolution.
    Murray JW; Maghlaoui K; Barber J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Dec; 63(Pt 12):998-1002. PubMed ID: 18084078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional roles of the hexamer structure of C-phycocyanin revealed by calculation of absorption wavelength.
    Kikuchi H
    FEBS Open Bio; 2021 Jan; 11(1):164-172. PubMed ID: 33190413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 A: structural implications for thermal stability in phycobilisome assembly.
    Adir N; Dobrovetsky Y; Lerner N
    J Mol Biol; 2001 Oct; 313(1):71-81. PubMed ID: 11601847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly.
    Stec B; Troxler RF; Teeter MM
    Biophys J; 1999 Jun; 76(6):2912-21. PubMed ID: 10354419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina.
    Niedzwiedzki DM; Bar-Zvi S; Blankenship RE; Adir N
    Biochim Biophys Acta Bioenerg; 2019 Apr; 1860(4):286-296. PubMed ID: 30703363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM.
    Sonani RR; Gupta GD; Madamwar D; Kumar V
    PLoS One; 2015; 10(4):e0124580. PubMed ID: 25923120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryospectroscopy Studies of Intact Light-Harvesting Antennas Reveal Empirical Electronic Energy Transitions in Two Cyanobacteria Species.
    Nganou C; Adir N; Mkandawire M
    J Phys Chem B; 2018 Mar; 122(12):3068-3078. PubMed ID: 29457730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acclimation process of the chlorophyll d-bearing cyanobacterium Acaryochloris marina to an orange light environment revealed by transcriptomic analysis and electron microscopic observation.
    Kashimoto T; Miyake K; Sato M; Maeda K; Matsumoto C; Ikeuchi M; Toyooka K; Watanabe S; Kanesaki Y; Narikawa R
    J Gen Appl Microbiol; 2020 Jun; 66(2):106-115. PubMed ID: 32147625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina.
    Nganou AC; David L; Adir N; Pouhe D; Deen MJ; Mkandawire M
    Photochem Photobiol Sci; 2015 Feb; 14(2):429-38. PubMed ID: 25470281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly.
    Marx A; Adir N
    Biochim Biophys Acta; 2013 Mar; 1827(3):311-8. PubMed ID: 23201474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.