These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 29704570)

  • 1. Proteomic analysis of the effect of plant-derived smoke on soybean during recovery from flooding stress.
    Li X; Rehman SU; Yamaguchi H; Hitachi K; Tsuchida K; Yamaguchi T; Sunohara Y; Matsumoto H; Komatsu S
    J Proteomics; 2018 Jun; 181():238-248. PubMed ID: 29704570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions.
    Zhong Z; Furuya T; Ueno K; Yamaguchi H; Hitachi K; Tsuchida K; Tani M; Tian J; Komatsu S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31940953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress.
    Oh M; Nanjo Y; Komatsu S
    Front Plant Sci; 2014; 5():559. PubMed ID: 25368623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular Proteomics: Application to Elucidation of Flooding-Response Mechanisms in Soybean.
    Komatsu S; Hashiguchi A
    Proteomes; 2018 Feb; 6(1):. PubMed ID: 29495455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance.
    Hossain Z; Komatsu S
    Proteomes; 2014 Mar; 2(1):107-127. PubMed ID: 28250373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response and adaptation by plants to flooding stress.
    Jackson MB; Colmer TD
    Ann Bot; 2005 Sep; 96(4):501-5. PubMed ID: 16217870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Millmeter-wave irradiation regulates mRNA-expression and the ubiquitin-proteasome system in wheat exposed to flooding stress.
    Komatsu S; Nishiuchi T; Furuya T; Tani M
    J Proteomics; 2024 Mar; 294():105073. PubMed ID: 38218429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of mould remediation in a healthcare setting following extensive flooding.
    Meda M; Gentry V; Preece E; Nagy C; Kumari P; Wilson P; Hoffman P
    J Hosp Infect; 2024 Apr; 146():1-9. PubMed ID: 38246430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retraction: The intervention of classical and molecular breeding approaches to enhance flooding stress tolerance in soybean - An review.
    Frontiers Editorial Office
    Front Plant Sci; 2024; 15():1441679. PubMed ID: 38903443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Identification, Characterization, and Expression Analysis of Four Subgroup Members of the GH13 Family in Wheat (
    Yin Y; Cui D; Sun H; Guan P; Zhang H; Chi Q; Jiao Z
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis Reveals Salt-Tolerant Mechanism in Soybean Applied with Plant-Derived Smoke Solution.
    Komatsu S; Kimura T; Rehman SU; Yamaguchi H; Hitachi K; Tsuchida K
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTRAQ-Based Quantitative Proteomics Unveils Protein Dynamics in the Root of
    Yang X; Jiang Z; He J; Shen L
    Life (Basel); 2023 Jun; 13(6):. PubMed ID: 37374181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop Proteomics under Abiotic Stress: From Data to Insights.
    Kausar R; Wang X; Komatsu S
    Plants (Basel); 2022 Oct; 11(21):. PubMed ID: 36365330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress.
    Komatsu S; Tsutsui Y; Furuya T; Yamaguchi H; Hitachi K; Tsuchida K; Tani M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and Proteomic Analyses of Soybean Seedling Interaction Mechanism Affected by Fiber Crosslinked with Zinc-Oxide Nanoparticles.
    Komatsu S; Murata K; Yakeishi S; Shimada K; Yamaguchi H; Hitachi K; Tsuchida K; Obi R; Akita S; Fukuda R
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological, Biochemical, and Proteomic Analyses to Understand the Promotive Effects of Plant-Derived Smoke Solution on Wheat Growth under Flooding Stress.
    Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Rehman SU; Ohno T
    Plants (Basel); 2022 Jun; 11(11):. PubMed ID: 35684281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular Proteomics to Understand Promotive Effect of Plant-Derived Smoke Solution on Soybean Root.
    Murashita Y; Nishiuchi T; Rehman SU; Komatsu S
    Proteomes; 2021 Oct; 9(4):. PubMed ID: 34698284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress.
    Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Kono Y; Nishimura M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-Derived Smoke Affects Biochemical Mechanism on Plant Growth and Seed Germination.
    Khatoon A; Rehman SU; Aslam MM; Jamil M; Komatsu S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33092218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Omics Strategies for Decoding Smoke-Assisted Germination Pathways and Seed Vigour.
    Bose U; Juhász A; Broadbent JA; Komatsu S; Colgrave ML
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.