These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 29704653)
1. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli. Tseng IT; Chen YL; Chen CH; Shen ZX; Yang CH; Li SY Metab Eng; 2018 May; 47():445-452. PubMed ID: 29704653 [TBL] [Abstract][Full Text] [Related]
2. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli. Yang CH; Liu EJ; Chen YL; Ou-Yang FY; Li SY Microb Cell Fact; 2016 Aug; 15(1):133. PubMed ID: 27485110 [TBL] [Abstract][Full Text] [Related]
3. The Catalytic Role of RuBisCO for Pang JJ; Shin JS; Li SY Front Bioeng Biotechnol; 2020; 8():543807. PubMed ID: 33330409 [TBL] [Abstract][Full Text] [Related]
4. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Zhuang ZY; Li SY Bioresour Technol; 2013 Dec; 150():79-88. PubMed ID: 24152790 [TBL] [Abstract][Full Text] [Related]
5. The Physiological Responses of Liu EJ; Tseng IT; Chen YL; Pang JJ; Shen ZX; Li SY Microorganisms; 2020 Aug; 8(8):. PubMed ID: 32759862 [TBL] [Abstract][Full Text] [Related]
6. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. Li YH; Ou-Yang FY; Yang CH; Li SY Bioresour Technol; 2015; 187():189-197. PubMed ID: 25846189 [TBL] [Abstract][Full Text] [Related]
7. Engineering RuBisCO-based shunt for improved cadaverine production in Escherichia coli. Feng J; Han Y; Xu S; Liao Y; Wang Y; Xu S; Li H; Wang X; Chen K Bioresour Technol; 2024 Apr; 398():130529. PubMed ID: 38437969 [TBL] [Abstract][Full Text] [Related]
8. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production. van Aalst ACA; Geraats EH; Jansen MLA; Mans R; Pronk JT FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37942589 [TBL] [Abstract][Full Text] [Related]
9. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli. Matsumoto K; Saito J; Yokoo T; Hori C; Nagata A; Kudoh Y; Ooi T; Taguchi S J Biosci Bioeng; 2019 Sep; 128(3):302-306. PubMed ID: 30987875 [TBL] [Abstract][Full Text] [Related]
10. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae. van Aalst ACA; Mans R; Pronk JT Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):112. PubMed ID: 36253796 [TBL] [Abstract][Full Text] [Related]
11. Manipulating ATP supply improves in situ CO Chen CH; Tseng IT; Lo SC; Yu ZR; Pang JJ; Chen YH; Huang CC; Li SY 3 Biotech; 2020 Mar; 10(3):125. PubMed ID: 32140377 [TBL] [Abstract][Full Text] [Related]
12. Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. Wang X; Falcone DL; Tabita FR J Bacteriol; 1993 Jun; 175(11):3372-9. PubMed ID: 8501041 [TBL] [Abstract][Full Text] [Related]
13. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield. van Aalst ACA; van der Meulen IS; Jansen MLA; Mans R; Pronk JT Metab Eng; 2023 Nov; 80():151-162. PubMed ID: 37751790 [TBL] [Abstract][Full Text] [Related]
14. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Liang F; Englund E; Lindberg P; Lindblad P Metab Eng; 2018 Mar; 46():51-59. PubMed ID: 29477858 [TBL] [Abstract][Full Text] [Related]
15. Optimizing anaerobic growth rate and fermentation kinetics in Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562 [TBL] [Abstract][Full Text] [Related]
16. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli. Parikh MR; Greene DN; Woods KK; Matsumura I Protein Eng Des Sel; 2006 Mar; 19(3):113-9. PubMed ID: 16423843 [TBL] [Abstract][Full Text] [Related]
17. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. Tan SI; Ng IS Bioresour Technol; 2020 Oct; 314():123785. PubMed ID: 32652452 [TBL] [Abstract][Full Text] [Related]
18. Recycling Carbon Dioxide during Xylose Fermentation by Engineered Saccharomyces cerevisiae. Xia PF; Zhang GC; Walker B; Seo SO; Kwak S; Liu JJ; Kim H; Ort DR; Wang SG; Jin YS ACS Synth Biol; 2017 Feb; 6(2):276-283. PubMed ID: 27744692 [TBL] [Abstract][Full Text] [Related]
19. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. Falcone DL; Tabita FR J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547 [TBL] [Abstract][Full Text] [Related]