These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 29704706)

  • 1. A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT.
    Abbaspour S; Tanha K; Mahmoudian B; Assadi M; Pirayesh Islamian J
    Appl Radiat Isot; 2018 Sep; 139():53-60. PubMed ID: 29704706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.
    Roshan HR; Mahmoudian B; Gharepapagh E; Azarm A; Pirayesh Islamian J
    Appl Radiat Isot; 2016 Feb; 108():124-128. PubMed ID: 26720261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo Simulation Study of Optimization for Collimator in a Pixelated SPECT Camera.
    Telikani Z; Sadremomtaz A
    J Med Imaging Radiat Sci; 2019 Mar; 50(1):163-170. PubMed ID: 30777239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A parallel-cone collimator for high-energy SPECT.
    Beijst C; Elschot M; Viergever MA; de Jong HW
    J Nucl Med; 2015 Mar; 56(3):476-82. PubMed ID: 25655627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Improved Imaging Properties with Tungsten-Based Parallel-Hole Collimators: A Monte Carlo Study.
    Pirayesh Islamian J; Ljungberg M
    World J Nucl Med; 2024 Jun; 23(2):95-102. PubMed ID: 38933066
    [No Abstract]   [Full Text] [Related]  

  • 6. The Effect of Parallel-hole Collimator Material on Image and Functional Parameters in SPECT Imaging: A SIMIND Monte Carlo Study.
    Azarm A; Islamian JP; Mahmoudian B; Gharepapagh E
    World J Nucl Med; 2015; 14(3):160-4. PubMed ID: 26420985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Rose's metal alloy as a pinhole collimator material in preclinical small-animal imaging: a Monte Carlo evaluation.
    Peterson M; Strand SE; Ljungberg M
    Med Phys; 2015 Apr; 42(4):1698-709. PubMed ID: 25832059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Wolfmet Tungsten Alloys as Parallel-Hole Collimator Material on Single-Photon Emission Computed Tomography Image Quality and Functional Parameters: A Simulating Medical Imaging Nuclear Detectors Monte Carlo Study.
    Darami M; Mahmoudian B; Ljungberg M; Pirayesh Islamian J
    World J Nucl Med; 2023 Sep; 22(3):217-225. PubMed ID: 37854088
    [No Abstract]   [Full Text] [Related]  

  • 9. Design and evaluation of an adaptive multipinhole collimator for high-performance clinical and preclinical imaging.
    Si C; Mok GS; Chen L; Tsui BM
    Nucl Med Commun; 2016 Mar; 37(3):313-21. PubMed ID: 26528787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation the effect of different collimators and energy window on Y-90 bremsstrahlung SPECT imaging by SIMIND Monte Carlo program.
    Taherparvar P; Shahmari N
    Nucl Med Rev Cent East Eur; 2019; 22(2):45-55. PubMed ID: 31482556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators.
    Fan P; Hutton BF; Holstensson M; Ljungberg M; Pretorius PH; Prasad R; Ma T; Liu Y; Wang S; Thorn SL; Stacy MR; Sinusas AJ; Liu C
    Med Phys; 2015 Dec; 42(12):6895-911. PubMed ID: 26632046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinning slithole collimation for high-sensitivity small animal SPECT: Design and assessment using GATE simulation.
    Mahani H; Raisali G; Kamali-Asl A; Ay MR
    Phys Med; 2017 Aug; 40():42-50. PubMed ID: 28712714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of two multi-pinhole collimators for brain SPECT.
    Chen L; Tsui BMW; Mok GSP
    Ann Nucl Med; 2017 Oct; 31(8):636-648. PubMed ID: 28755084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-resolution multi-sensitivity design for parallel-hole SPECT collimators.
    Li Y; Xiao P; Zhu X; Xie Q
    Phys Med Biol; 2016 Jul; 61(14):5390-405. PubMed ID: 27359049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of pinhole collimator materials for micron-resolution ex vivo SPECT.
    Nguyen MP; Goorden MC; Kamphuis C; Beekman FJ
    Phys Med Biol; 2019 May; 64(10):105017. PubMed ID: 30947156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation study of a novel target oriented SPECT design using a variable pinhole collimator.
    Bae S; Chun J; Cha H; Yeom JY; Lee K; Lee H
    Med Phys; 2017 Feb; 44(2):470-478. PubMed ID: 28032904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheet beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles.
    Dunning CAS; Bazalova-Carter M
    Med Phys; 2018 Jun; 45(6):2572-2582. PubMed ID: 29604070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing planar image quality of rotating slat and parallel hole collimation: influence of system modeling.
    Van Holen R; Vandenberghe S; Staelens S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1989-2002. PubMed ID: 18356576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector.
    Ogawa K; Ohmura N; Iida H; Nakamura K; Nakahara T; Kubo A
    Ann Nucl Med; 2009 Oct; 23(8):763-70. PubMed ID: 19680739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.