These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 29704713)
1. The relative contribution of peat compaction and oxidation to subsidence in built-up areas in the Rhine-Meuse delta, The Netherlands. van Asselen S; Erkens G; Stouthamer E; Woolderink HAG; Geeraert REE; Hefting MM Sci Total Environ; 2018 Sep; 636():177-191. PubMed ID: 29704713 [TBL] [Abstract][Full Text] [Related]
2. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Wakhid N; Hirano T; Okimoto Y; Nurzakiah S; Nursyamsi D Sci Total Environ; 2017 Mar; 581-582():857-865. PubMed ID: 28088548 [TBL] [Abstract][Full Text] [Related]
3. Toward a mechanistic understanding of "peat collapse" and its potential contribution to coastal wetland loss. Chambers LG; Steinmuller HE; Breithaupt JL Ecology; 2019 Jul; 100(7):e02720. PubMed ID: 30933312 [TBL] [Abstract][Full Text] [Related]
4. Deformation of the aquifer system under groundwater level fluctuations and its implication for land subsidence control in the Tianjin coastal region. Yang J; Cao G; Han D; Yuan H; Hu Y; Shi P; Chen Y Environ Monit Assess; 2019 Feb; 191(3):162. PubMed ID: 30771016 [TBL] [Abstract][Full Text] [Related]
5. The impact of avulsion on groundwater level and peat formation in delta floodbasins during the middle-Holocene transgression in the Rhine-Meuse delta, The Netherlands. van Asselen S; Cohen KM; Stouthamer E Holocene; 2017 Nov; 27(11):1694-1706. PubMed ID: 30369721 [TBL] [Abstract][Full Text] [Related]
6. Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992-2010 results from SAR-based interferometry. Da Lio C; Tosi L Sci Total Environ; 2018 Aug; 633():752-764. PubMed ID: 29602114 [TBL] [Abstract][Full Text] [Related]
7. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Rateb A; Abotalib AZ Sci Total Environ; 2020 Aug; 729():138868. PubMed ID: 32498166 [TBL] [Abstract][Full Text] [Related]
8. Historical peat loss explains limited short-term response of drained blanket bogs to rewetting. Williamson J; Rowe E; Reed D; Ruffino L; Jones P; Dolan R; Buckingham H; Norris D; Astbury S; Evans CD J Environ Manage; 2017 Mar; 188():278-286. PubMed ID: 27992818 [TBL] [Abstract][Full Text] [Related]
9. Subsidence and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna. Brown S; Nicholls RJ Sci Total Environ; 2015 Sep; 527-528():362-74. PubMed ID: 25974280 [TBL] [Abstract][Full Text] [Related]
10. Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas. Liu Y; Li J; Fasullo J; Galloway DL Sci Rep; 2020 Oct; 10(1):17905. PubMed ID: 33087790 [TBL] [Abstract][Full Text] [Related]
11. The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows: the roles of peat type and land use. Brouns K; Verhoeven JT; Hefting MM J Environ Manage; 2014 Oct; 143():44-53. PubMed ID: 24837279 [TBL] [Abstract][Full Text] [Related]
12. Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage. Pronger J; Schipper LA; Hill RB; Campbell DI; McLeod M J Environ Qual; 2014 Jul; 43(4):1442-9. PubMed ID: 25603091 [TBL] [Abstract][Full Text] [Related]
13. Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Shirzaei M; Bürgmann R Sci Adv; 2018 Mar; 4(3):eaap9234. PubMed ID: 29536042 [TBL] [Abstract][Full Text] [Related]
14. Spatial analysis of soil subsidence in peat meadow areas in Friesland in relation to land and water management, climate change, and adaptation. Brouns K; Eikelboom T; Jansen PC; Janssen R; Kwakernaak C; van den Akker JJ; Verhoeven JT Environ Manage; 2015 Feb; 55(2):360-72. PubMed ID: 25351830 [TBL] [Abstract][Full Text] [Related]
15. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Minderhoud PSJ; Erkens G; Pham VH; Bui VT; Erban L; Kooi H; Stouthamer E Environ Res Lett; 2017; 12(6):064006. PubMed ID: 30344619 [TBL] [Abstract][Full Text] [Related]
16. Tropical peat subsidence rates are related to decadal LULC changes: Insights from InSAR analysis. Umarhadi DA; Widyatmanti W; Kumar P; Yunus AP; Khedher KM; Kharrazi A; Avtar R Sci Total Environ; 2022 Apr; 816():151561. PubMed ID: 34767891 [TBL] [Abstract][Full Text] [Related]
17. Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition. Tolunay D; Kowalchuk GA; Erkens G; Hefting MM Sci Total Environ; 2024 Jun; 930():172639. PubMed ID: 38670365 [TBL] [Abstract][Full Text] [Related]
18. Measuring Land Change in Coastal Zone around a Rapidly Urbanized Bay. Huang F; Huang B; Huang J; Li S Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29882910 [TBL] [Abstract][Full Text] [Related]
19. Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA. Deverel SJ; Ingrum T; Leighton D Hydrogeol J; 2016; 24():569-586. PubMed ID: 27471427 [TBL] [Abstract][Full Text] [Related]
20. Assessing soil compaction and micro-topography impacts of alternative heather cutting as compared to burning as part of grouse moor management on blanket bog. Heinemeyer A; Berry R; Sloan TJ PeerJ; 2019; 7():e7298. PubMed ID: 31346497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]