These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 29704789)

  • 1. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.
    Hinkel-Lipsker JW; Hahn ME
    Hum Mov Sci; 2018 Jun; 59():178-192. PubMed ID: 29704789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of variable practice on locomotor adaptation to a novel asymmetric gait.
    Hinkel-Lipsker JW; Hahn ME
    Exp Brain Res; 2017 Sep; 235(9):2829-2841. PubMed ID: 28647814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contextual interference during adaptation to asymmetric split-belt treadmill walking results in transfer of unique gait mechanics.
    Hinkel-Lipsker JW; Hahn ME
    Biol Open; 2017 Dec; 6(12):1919-1932. PubMed ID: 29175857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation.
    Altman AR; Reisman DS; Higginson JS; Davis IS
    Gait Posture; 2012 Feb; 35(2):287-91. PubMed ID: 22015048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for automated control of belt velocity changes with an instrumented treadmill.
    Hinkel-Lipsker JW; Hahn ME
    J Biomech; 2016 Jan; 49(1):132-134. PubMed ID: 26654110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint-level coordination patterns for split-belt walking across different speed ratios.
    Kambic RE; Roemmich RT; Bastian AJ
    J Neurophysiol; 2023 May; 129(5):969-983. PubMed ID: 36988216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.
    Layne CS; Chelette AM; Pourmoghaddam A
    Somatosens Mot Res; 2015; 32(1):31-8. PubMed ID: 25162146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
    Mukherjee M; Eikema DJ; Chien JH; Myers SA; Scott-Pandorf M; Bloomberg JJ; Stergiou N
    Exp Brain Res; 2015 Oct; 233(10):3005-12. PubMed ID: 26169104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway.
    Rosenblatt NJ; Latash ML; Hurt CP; Grabiner MD
    Neurosci Lett; 2015 Jul; 600():110-4. PubMed ID: 26003449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in movement organization and control strategies when learning a biomechanically constrained gait pattern, racewalking: a PCA study.
    Majed L; Heugas AM; Siegler IA
    Exp Brain Res; 2017 Mar; 235(3):931-940. PubMed ID: 27942763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split-Belt Treadmill Walking Alters Lower Extremity Frontal Plane Mechanics.
    Roper JA; Roemmich RT; Tillman MD; Terza MJ; Hass CJ
    J Appl Biomech; 2017 Aug; 33(4):256-260. PubMed ID: 28084861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion.
    Forbes PA; Vlutters M; Dakin CJ; van der Kooij H; Blouin JS; Schouten AC
    J Physiol; 2017 Mar; 595(6):2175-2195. PubMed ID: 28008621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking through the looking glass: Adapting gait patterns with mirror feedback.
    Stone AE; Terza MJ; Raffegeau TE; Hass CJ
    J Biomech; 2019 Jan; 83():104-109. PubMed ID: 30503256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing aftereffects after split-belt treadmill walking and unilateral stepping.
    Huynh KV; Sarmento CH; Roemmich RT; Stegemöller EL; Hass CJ
    Med Sci Sports Exerc; 2014 Jul; 46(7):1392-9. PubMed ID: 24389526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different Error Size During Locomotor Adaptation Affects Transfer to Overground Walking Poststroke.
    Alcântara CC; Charalambous CC; Morton SM; Russo TL; Reisman DS
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1020-1030. PubMed ID: 30409103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.